Trang chủ Lớp 11 Toán lớp 11 Câu hỏi 2 trang 81 SGK Đại số và Giải tích lớp...

Câu hỏi 2 trang 81 SGK Đại số và Giải tích lớp 11: Chứng minh rằng với n ∈ N* thì...

Câu hỏi 2 trang 81 SGK Đại số và Giải tích 11. Chứng minh rằng với n ∈ N* thì. Bài 1. Phương pháp quy nạp toán học

Chứng minh rằng với n ∈ N* thì

\(\displaystyle 1 + 2 + 3 + … + n = {{n(n + 1)} \over 2}\)

– Xét với \(n=1\), chứng minh đẳng thức đúng với \(n=1\).

– Giả sử đẳng thức đúng với \(n=k\ge 1\), chứng minh đẳng thức đúng với \(n=k+1\).

– Khi \(n = 1, VT = 1\)

Quảng cáo

\(\displaystyle VP = {{1(1 + 1)} \over 2} = 1\)

– Giả sử đẳng thức đúng với \(n = k ≥ 1\), nghĩa là:

\(\displaystyle{S_k} = 1 + 2 + 3 + … + k = {{k(k + 1)} \over 2}\)

Ta phải chứng minh rằng đẳng thức cũng đúng với \(n = k + 1\), tức là:

\(\displaystyle {S_{k + 1}} = 1 + 2 + 3 + … + k + (k + 1)\) \(\displaystyle  = {{(k + 1)(k + 2)} \over 2}\)

Thật vậy, từ giả thiết quy nạp ta có:

\(\displaystyle{S_{k + 1}} = {S_k} + (k + 1) \) \(\displaystyle = {{k(k + 1)} \over 2} + (k + 1)\)

\(\displaystyle = {{k(k + 1) + 2(k + 1)} \over 2}\) \(\displaystyle ={{(k + 1)(k + 2)} \over 2}\)

Vậy đẳng thức đúng với mọi n ∈ N*

 

Quảng cáo

Mục lục môn Toán 11