Trang chủ Lớp 8 SBT Toán lớp 8 Câu 66 trang 41 Sách bài tập (SBT) Toán 8 tập 1:...

Câu 66 trang 41 Sách bài tập (SBT) Toán 8 tập 1: a. Với mọi giá trị của x khác ± 1, biểu thức...

Chia sẻ
a. Với mọi giá trị của x khác ± 1, biểu thức. Câu 66 trang 41 Sách bài tập (SBT) Toán 8 tập 1 – Bài tập ôn Chương II. Phân thức đại số

Chú ý rằng nếu c > 0 thì \({\left( {a + b} \right)^2} + c\) và \({\left( {a – b} \right)^2} + c\) đều dương với mọi a, b. Áp dụng điều này chứng minh rằng :

a. Với mọi giá trị của x khác ± 1, biểu thức

\({{x + 2} \over {x – 1}}.\left( {{{{x^3}} \over {2x + 2}} + 1} \right) – {{8x + 7} \over {2{x^2} – 2}}\) luôn luôn có giá trị dương;

b. Với mọi giá trị của x khác 0 và khác – 3 , biểu thức :

\({{1 – {x^2}} \over x}.\left( {{{{x^2}} \over {x + 3}} – 1} \right) + {{3{x^2} – 14x + 3} \over {{x^2} + 3x}}\) luôn luôn có giá trị âm.

a. \({{x + 2} \over {x – 1}}.\left( {{{{x^3}} \over {2x + 2}} + 1} \right) – {{8x + 7} \over {2{x^2} – 2}}\) điều kiện \(x \ne 1\) và \(x \ne  – 1\)

\(\eqalign{  &  = {{x + 2} \over {x – 1}}.{{{x^3} + 2x + 2} \over {2\left( {x + 1} \right)}} – {{8x + 7} \over {2\left( {{x^2} – 1} \right)}}  \cr  &  = {{\left( {x + 2} \right)\left( {{x^3} + 2x + 2} \right)} \over {2\left( {x – 1} \right)\left( {x + 1} \right)}} – {{8x + 7} \over {2\left( {x – 1} \right)\left( {x + 1} \right)}}  \cr  &  = {{{x^4} + 2{x^2} + 2x + 2{x^3} + 4x + 4 – 8x – 7} \over {2\left( {x – 1} \right)\left( {x + 1} \right)}}  \cr  &  = {{{x^4} + 2{x^3} + 2{x^2} – 2x – 3} \over {2\left( {x – 1} \right)\left( {x + 1} \right)}} = {{{x^4} – {x^2} + 2{x^3} – 2x + 3{x^2} – 3} \over {2\left( {x – 1} \right)\left( {x + 1} \right)}}  \cr  &  = {{{x^2}\left( {{x^2} – 1} \right) + 2x\left( {{x^2} – 1} \right) + 3\left( {{x^2} – 1} \right)} \over {2\left( {x – 1} \right)\left( {x + 1} \right)}} = {{\left( {{x^2} – 1} \right)\left( {{x^2} + 2x + 3} \right)} \over {2\left( {{x^2} – 1} \right)}}  \cr  &  = {{{x^2} + 2x + 3} \over 2} \cr} \)

Quảng cáo

Biểu thức dương khi \({x^2} + 2x + 3 > 0\) ta có : \({x^2} + 2x + 3 = {x^2} + 2x + 1 + 2 = {\left( {x + 1} \right)^2} + 3 > 0\) với mọi giá trị của x.

Vậy giá trị của biểu thức dương với mọi giá trị \(x \ne  – 1\) và \(x \ne 1\)

b. \({{1 – {x^2}} \over x}.\left( {{{{x^2}} \over {x + 3}} – 1} \right) + {{3{x^2} – 14x + 3} \over {{x^2} + 3x}}\) điều kiện \(x \ne 0\) và \(x \ne  – 3\)

\(\eqalign{  &  = {{1 – {x^2}} \over x}.{{{x^2} – \left( {x + 3} \right)} \over {x + 3}} + {{3{x^2} – 14x + 3} \over {x\left( {x + 3} \right)}} = {{\left( {1 – {x^2}} \right)\left( {{x^2} – x – 3} \right)} \over {x\left( {x + 3} \right)}} + {{3{x^2} – 14x + 3} \over {x\left( {x + 3} \right)}}  \cr  &  = {{{x^2} – x – 3 – {x^4} + {x^3} + 3{x^2} + 3{x^2} – 14x + 3} \over {x\left( {x + 3} \right)}}  \cr  &  = {{ – {x^4} + {x^3} + 7{x^2} – 15x} \over {x\left( {x + 3} \right)}} = {{x\left( { – {x^3} + {x^2} + 7x – 15} \right)} \over {x\left( {x + 3} \right)}}  \cr  &  = {{ – {x^3} + {x^2} + 7x – 15} \over {x + 3}} = {{ – {x^3} – 3{x^2} + 4{x^2} + 12x – 5x – 15} \over {x + 3}}  \cr  &  = {{ – {x^2}\left( {x + 3} \right) + 4x\left( {x + 3} \right) – 5\left( {x + 3} \right)} \over {x + 3}} = {{\left( {x + 3} \right)\left( { – {x^2} + 4x – 5} \right)} \over {x – 3}}  \cr  &  =  – {x^2} + 4x – 5 =  – \left( {{x^2} – 4x + 5} \right) \cr} \)

Vì \({x^2} – 4x + 5 = {x^2} – 4x + 4 + 1 = {\left( {x – 2} \right)^2} + 1 > 0\) với mọi giá trị của x

nên \( – \left[ {{{\left( {x + 2} \right)}^2} + 1} \right] < 0\) với mọi giá trị của x.

Vậy giá trị của biểu thức luôn luôn âm với mọi giá trị \(x \ne 0\)và \(x \ne  – 3\)



Chia sẻ