Câu hỏi/bài tập:
Một chất điểm dao động điều hoà. Biết li độ và vận tốc của chất điểm tại thời điểm \({t_1}\), lần lượt là \({x_1} = 3cm\) và \({v_1} = - 60\sqrt 3 \)cm/s; tại thời điểm \({t_2}\) ; lần lượt là \({x_2} = 3\sqrt 2 cm\) và \({v_2} = 60\sqrt 2 \)cm/s. Biên độ và tần số góc của dao động lần lượt bằng
A. 6cm ; 20 rad/s. B. 6 cm ; 12 rad/s.
C. 12 cm ; 20 rad/s. D. 12 cm ; 10 rad/s.
:
Vận dụng kiến thức đã học về các đại lượng của phương trình dao động điều hoà. Phương trình dao động điều hoà có dạng: \(x = A\cos \left( {\omega t + \varphi } \right)\)
Phương trình của vận tốc có dạng : \(v = A\omega \cos \left( {\omega t + \varphi + \frac{\pi }{2}} \right)\)
Công thức độc lập với thời gian :
Advertisements (Quảng cáo)
\({\left( {\frac{x}{A}} \right)^2} + {\left( {\frac{v}{{A\omega }}} \right)^2} = 1\)
:
Tại thời điểm \({t_1}\) : \({\left( {\frac{{{x_1}}}{A}} \right)^2} + {\left( {\frac{{{v_1}}}{{A\omega }}} \right)^2} = 1 = > {\left( {\frac{3}{A}} \right)^2} + \left( {\frac{{ - 60\sqrt 3 }}{{A\omega }}} \right) = 1\)
Tại thời điểm \({t_2}\) : \({\left( {\frac{{{x_2}}}{A}} \right)^2} + {\left( {\frac{{{v_2}}}{{A\omega }}} \right)^2} = 1 = > {\left( {\frac{{3\sqrt 2 }}{A}} \right)^2} + \left( {\frac{{60\sqrt 2 }}{{A\omega }}} \right) = 1\)
Giải hệ phương trình trên ta được :
\({A^2} = 36 = > A = 6(cm)\)
\({\left( {A\omega } \right)^2} = 14400 = > \omega = 20(rad/s)\)
Đáp án : A