Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 27 trang 21 SBT Toán 11 – Cánh diều: Người ta...

Bài 27 trang 21 SBT Toán 11 - Cánh diều: Người ta ghi lại tốc độ của 40 xe đạp đi qua một vị trí trên đường...

Áp dụng các công thức đã học để xác định các đại lượng tiêu biểu. Giải chi tiết - Bài 27 trang 21 sách bài tập toán 11 - Cánh diều - Bài tập cuối chương V. Người ta ghi lại tốc độ của 40 xe đạp đi qua một vị trí trên đường. Mẫu số liệu dưới đây ghi lại tốc độ của 40 xe đó (đơn vị: km/h)...

Question - Câu hỏi/Đề bài

Người ta ghi lại tốc độ của 40 xe đạp đi qua một vị trí trên đường. Mẫu số liệu dưới đây ghi lại tốc độ của 40 xe đó (đơn vị: km/h):

a) Lập bảng tần số ghép nhóm bao gồm cả tần số tích lũy có năm nhóm ứng với năm nửa khoảng: [10 ; 12), [12 ; 14), (14 ; 16), [16 ; 18), [18 ; 20).

b) Xác định các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm trên (làm tròn các kết quả đến hàng phần mười).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng các công thức đã học để xác định các đại lượng tiêu biểu.

Answer - Lời giải/Đáp án

a) Bảng tần số ghép nhóm cho mẫu số liệu có năm nhóm ứng với năm nửa khoảng

- Tốc độ trung bình của 40 xe đạp là:

\(\bar x = \frac{{11.8 + 13.12 + 15.9 + 17.7 + 19.4}}{{40}} \approx 14,4\) (km/h).

- Ta có: \(\frac{n}{2} = \frac{{40}}{2} = 20\) mà \(20 = 20

Xét nhóm 3 là nhóm [14 ; 16) có \(r = 14,{\rm{ }}d = 2,{\rm{ }}{n_3} = 9\) và nhóm 2 là nhóm

[12 ; 14) có \(c{f_2} = 20.\)

Trung vị của mẫu số liệu là:

Advertisements (Quảng cáo)

\({M_e} = r + \left( {\frac{{\frac{n}{2} - c{f_{k - 1}}}}{{{n_k}}}} \right).d = 14 + \left( {\frac{{20 - 20}}{9}} \right).2 = 14\) (km/h).

Tứ phân vị thứ hai của mẫu số liệu là: \({Q_2} = {M_e} = 14\) (km/h).

- Ta có: \(\frac{n}{4} = \frac{{40}}{4} = 10\) mà \(8

Xét nhóm 2 là nhóm [12 ; 14) có \(s = 12,{\rm{ }}h = 2,{\rm{ }}{n_2} = 12\) và nhóm 1 là nhóm

[10 ; 12) có \(c{f_1} = 8.\)

Tứ phân vị thứ nhất của mẫu số liệu là:

\({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h = 12 + \left( {\frac{{10 - 8}}{{12}}} \right).2 = 12,3\) (km/h).

- Ta có: \(\frac{{3n}}{4} = \frac{{3.40}}{4} = 30\) mà \(29

Xét nhóm 4 là nhóm [16 ; 18) có \(t = 16,{\rm{ }}l = 2,{\rm{ }}{n_4} = 7\) và nhóm 3 là nhóm

[14 ; 16) có \(c{f_3} = 29.\)

Tứ phân vị thứ ba của mẫu số liệu là:

\({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l = 16 + \left( {\frac{{30 - 29}}{7}} \right).2 \approx 16,3\)(km/h).

- Ta thấy: Nhóm 2 ứng với nửa khoảng [12 ; 14) là nhóm có tần số lớn nhất với \(u = 12,{\rm{ }}g = 2,{\rm{ }}{n_2} = 12,{\rm{ }}{n_1} = 8,{\rm{ }}{n_3} = 9.\)

Mốt của mẫu số liệu là:

\({M_0} = u + \left( {\frac{{{n_i} - {n_{i - 1}}}}{{2{n_i} - {n_{i - 1}} - {n_{i + 1}}}}} \right).g = 12 + \left( {\frac{{12 - 8}}{{2.12 - 8 - 9}}} \right).2 \approx 13,1\) (km/h).

Advertisements (Quảng cáo)