Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 31 trang 100 SBT Toán 11 – Cánh diều: Gọi (H)...

Bài 31 trang 100 SBT Toán 11 - Cánh diều: Gọi \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\). Dễ thấy rằng \({\alpha _1}\), \({\alpha _2}\), \({\alpha _3}\)...

Gọi \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\). Chỉ ra rằng \({\alpha _1} = \widehat {SAH}\), \({\alpha _2} = \widehat {SBH}\), \({\alpha _3} = \widehat {SCH}\). Gợi ý giải - Bài 31 trang 100 sách bài tập toán 11 - Cánh diều - Bài 3. Góc giữa đường thẳng và mặt phẳng. Góc nhị diện. Cho hình chóp \(S. ABCD\). Gọi \({\alpha _1}\), \({\alpha _2}\), \({\alpha _3}\)...

Question - Câu hỏi/Đề bài

Cho hình chóp \(S.ABCD\). Gọi \({\alpha _1}\), \({\alpha _2}\), \({\alpha _3}\), \({\alpha _4}\) lần lượt là góc giữa các đường thẳng \(SA\), \(SB\), \(SC\), \(SD\) và mặt phẳng \(\left( {ABCD} \right)\). Chứng minh rằng \(SA = SB = SC = SD \Leftrightarrow {\alpha _1} = {\alpha _2} = {\alpha _3} = {\alpha _4}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Gọi \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\). Chỉ ra rằng \({\alpha _1} = \widehat {SAH}\), \({\alpha _2} = \widehat {SBH}\), \({\alpha _3} = \widehat {SCH}\), \({\alpha _4} = \widehat {SDH}\), rồi suy ra điều phải chứng minh.

Answer - Lời giải/Đáp án

Gọi \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\).

Dễ thấy rằng \({\alpha _1}\), \({\alpha _2}\), \({\alpha _3}\), \({\alpha _4}\) là những góc tạo bởi đường thẳng và mặt phẳng, nên chúng không lớn hơn \({90^o}\).

Vì \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\), ta suy ra \({\alpha _1} = \widehat {SAH}\).

Advertisements (Quảng cáo)

Tam giác \(SAH\) vuông tại \(H\), ta có \(\sin {\alpha _1} = \sin \widehat {SAH} = \frac{{SH}}{{SA}}\).

Chứng minh tương tự, ta cũng có:

+ \({\alpha _2} = \widehat {SBH}\), \(\sin {\alpha _2} = \sin \widehat {SBH} = \frac{{SH}}{{SB}}\),

+ \({\alpha _3} = \widehat {SCH}\), \(\sin {\alpha _3} = \sin \widehat {SCH} = \frac{{SH}}{{SC}}\),

+ \({\alpha _4} = \widehat {SDH}\), \(\sin {\alpha _4} = \sin \widehat {SDH} = \frac{{SH}}{{SD}}\),

Vậy, \(SA = SB = SC = SD \Leftrightarrow \frac{{SH}}{{SA}} = \frac{{SH}}{{SB}} = \frac{{SH}}{{SC}} = \frac{{SH}}{{SD}}\)

\( \Leftrightarrow \sin {\alpha _1} = \sin {\alpha _2} = \sin {\alpha _3} = \sin {\alpha _4} \Leftrightarrow {\alpha _1} = {\alpha _2} = {\alpha _3} = {\alpha _4}\).

Bài toán được chứng minh.

Advertisements (Quảng cáo)