Bài 36. Giải các phương trình:
a) |2x| = x - 6; b) |-3x| = x - 8;
c) |4x| = 2x + 12; d) |-5x| - 16 = 3x.
Hướng dẫn giải:
a) |2x| = x - 6
|2x| = x - 6 ⇔ 2x = x - 6 khi x ≥ 0 ⇔ x = -6 không thoả mãn x ≥ 0
|2x| = x - 6 ⇔ -2x = x - 6 khi x < 0 ⇔ 3x = 6 ⇔ x = 2 không thoả mãn x < 0
Vậy phương trình vô nghiệm
b) |-3x| = x - 8
|-3x| = x - 8 ⇔ -3x = x - 8 khi -3x ≥ 0 ⇔ x ≤ 0
⇔ 4x = 8
⇔ x = 2 (không thoả mãn ≤ 0)
|-3x| = x - 8 ⇔ 3x = x - 8 khi -3x < 0 ⇔ x > 0
⇔ 2x = -8
⇔ x = -4 (không thoả mãn x < 0)
Vậy phương trình vô nghiệm
Advertisements (Quảng cáo)
c) |4x| = 2x + 12
|4x| = 2x + 12 ⇔ 4x = 2x + 12 khi 4x ≥ 0 ⇔ x ≥ 0
⇔ 2x = 12
⇔ x = 6 (thoả mãn điều kiện x ≥ 0)
|4x| = 2x + 12 ⇔ -4x = 2x + 12 khi 4x < 0 ⇔ x < 0
⇔ 6x = -12
⇔ x = -2 (thoả mãn điều kiện x < 0)
Vậy phương trình có hai nghiệm x = 6 và x = -2
d) |-5x| - 16 = 3x
|-5x| - 16 = 3x ⇔ -5x - 16 = 3x khi -5x ≥ 0 ⇔ x ≤ 0
⇔ 8x = -16
⇔ x = -2 (thoả mãn điều kiện x ≤ 0)
|-5x| - 16 = 3x ⇔ 5x -16 = 3x khi -5x < 0 ⇔ x > 0
⇔ 2x = 16
⇔ x = 8 (thoả mãn điều kiện x > 0)
Vậy phương trình có hai nghiệm x = -2, x= 8