Trang chủ Lớp 10 SBT Vật lí 10 - Kết nối tri thức Bài 12.5 trang 19, 20, 21 SBT Vật lý 10 – Kết...

Bài 12.5 trang 19, 20, 21 SBT Vật lý 10 - Kết nối tri thức: Một vật được ném theo phương nằm ngang từ độ cao 4,9 m, có tầm xa trên mặt đất L= 5 m. Lấy g= 9...

Áp dụng công thức tính tầm xa của vật bị ném: L = v0\(\sqrt {\frac{{2H}}{g}} \). Hướng dẫn giải Bài 12.5 - Bài 12. Chuyển động ném trang 19, 20, 21 - SBT Vật lý 10 Kết nối tri thức.

Câu hỏi/bài tập:

Một vật được ném theo phương nằm ngang từ độ cao 4,9 m, có tầm xa trên

mặt đất L= 5 m. Lấy g= 9,8 m/s2

a) Tính vận tốc ban đầu.

b) Viết phương trình chuyển động và vẽ đồ thị độ dịch chuyền – thời gian.

c) Xác định vận tốc của vật ngay trước khi chạm đất.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Áp dụng công thức tính tầm xa của vật bị ném: L = v0\(\sqrt {\frac{{2H}}{g}} \).

b) Xác định độ dịch chuyển theo phương thẳng đứng y và độ dịch chuyển theo phương nằm ngang x.

c) Sử dụng công thức tổng hợp vận tốc: v2 = vx2 + vy2

Trong đó: vx = v0; vy = gt.

Answer - Lời giải/Đáp án

a) Theo công thức tính tầm xa của vật bị ném: L = v0\(\sqrt {\frac{{2h}}{g}} \)

=> v0 = L\(\sqrt {\frac{g}{{2h}}} \)= 5\(\sqrt {\frac{{9,8}}{{2.4,9}}} \)= 5 m/s.

b) Ta cần xác định được mối quan hệ giữa độ dịch chuyển theo phương thẳng đứng y và độ dịch chuyển theo phương nằm ngang x:

Ta có: x = v0t => t = \(\frac{x}{{{v_0}}}\);

y = h = \(\frac{1}{2}\)gt2 = 4,9 - \(\frac{1}{2}\)g\(\frac{{{x^2}}}{{v_0^2}}\)= 4,9 – 0,196x2

Ta lập bảng biến thiên với 6 giá trị của x và y:

x (m)

0

Advertisements (Quảng cáo)

1

2

3

4

5

y (m)

4,9

4,7

4,1

3,1

1,8

0

Quỹ đạo là \(\frac{1}{2}\)đường parabol như hình vẽ:

c) Ta có vx = v0 = 5 m/s;

vy = gt = g\(\sqrt {\frac{{2h}}{g}} \)= \(\sqrt {2gh} \)= \(\sqrt {2.9,8.4,9} \)= 9,8 m/s.

Do đó: v =\(\sqrt {{v_x}^2 + {\rm{ }}{v_y}^2} \) =\(\sqrt {{5^2} + {\rm{ 9,}}{{\rm{8}}^2}} \)≈ 11m/s.

Ta có: tanα = \(\frac{{{v_y}}}{{{v_x}}}\)= 1,96 => α ≈ 63o.

Vậy vận tốc của vật ngay trước khi chạm đất có độ lớn là 11 m/s, hướng xuống dưới 63o so với phương nằm ngang.