Câu hỏi/bài tập:
Một viên đạn được bán theo phương nằm ngang từ một khẩu súng đặt ở độ cao 45,0 m so với mặt đất. Vận tốc của viên đạn khi vừa ra khỏi nòng súng có độ lớn là 250 m/s. Lấy g = 9,8 m/s.
a) Sau bao lâu thì viên đạn chạm đất?
b) Viên đạn rơi xuống đất cách điểm bắn theo phương nằm ngang bao
nhiêu mét?
c) Ngay trước khi chạm đất, vận tốc của viên đạn có độ lớn bằng bao nhiêu?
a) Sử dụng công thức tính thời gian rơi của vật bị ném ngang: t = \(\sqrt {\frac{{2h}}{g}} \).
b) Sử dụng công thức tính tầm xa L của chuyển động ném ngang:
L = dxmax = vxt = v0t.
Advertisements (Quảng cáo)
c) Sử dụng công thức tổng hợp vận tốc: v2 = vx2 + vy2
Trong đó: vx = v0; vy = gt.
a) Thời gian rơi của viên đạn là: t = \(\sqrt {\frac{{2h}}{g}} \)= \(\sqrt {\frac{{2.45}}{{9,8}}} \)≈ 3,03 s.
b) Viên đạn rơi xuống đất cách điểm bắn theo phương nằm ngang:
L = dxmax = vxt = v0t = 250.3,03 = 757,5 m.
c) Vận tốc của viên đạn ngay trước khi chạm đất là:
Ta có: v2 = vx2 + vy2 => v = \(\sqrt {{v_x}^2 + {\rm{ }}{v_y}^2} \)
Mà vx = v0 = 250 m/s; vy = gt = 9,8.3,03 ≈ 29,7 m/s.
Do đó: v = \(\sqrt {{{250}^2} + {\rm{ 29,}}{{\rm{7}}^2}} \)≈ 252 m/s.