Câu hỏi/bài tập:
Một xe đạp đang đi với vận tốc 2 m/s thì xuống dốc chuyển động nhanh dần đều với gia tốc 0,2 m/s2. Cùng lúc đó, một ô tô đang chạy với vận tốc 20 m/s lên dốc, chuyển động chậm dần đều với gia tốc 0,4 m/s2. Xác định vị trí hai xe gặp nhau trên dốc. Biết dốc dài 570 m.
Chọn chiều từ chân dốc lên đỉnh dốc là chiều dương. Điểm O là chân dốc như hình vẽ.
Viết phương trình chuyển động của mỗi xe theo công thức: \(d = {d_0} + {v_0}t + \frac{1}{2}a{t^2}\)
Hai xe gặp nhau khi d1 = d2. Giải phương trình ta sẽ xác định được vị trí 2 xe gặp nhau.
Chọn chiều từ chân dốc lên đỉnh dốc là chiều dương. Điểm O là chân dốc như hình vẽ.
Advertisements (Quảng cáo)
Xét chuyển động của ô tô, ta có: v01 = 20 m/s; a1 = -0,4 m/s2.
=> Phương trình chuyển động của ô tô: \({d_1} = {d_{01}} + {v_{01}}t + \frac{1}{2}{a_1}{t^2}\)= 20t – 0,2t2. (1)
Xét chuyển động của xe đạp, ta có: v02 = -2 m/s; d02 = 570 m; a2 = -0,2 m/s2.
Phương trình chuyển động: \({d_2} = {d_{02}} + {v_{02}}t + \frac{1}{2}{a_2}{t^2}\)= 570 – 2t – 0,1t2. (2)
Khi ô tô và xe đạp gặp nhau: d1 = d2 => 20t – 0,2t2 = 570 – 2t – 0,1t2 (3)
Nghiệm của phương trình (3) là t1 = 30 s và t2 = 190 s.\(\)
Thế t1 vào (1) ta được d1 = 420 m.
Thế t2 vào (2) ta được d2 = - 3400 m (Loại vì 2 xe gặp nhau trên dốc).
Vậy 2 xe gặp nhau tại vị trí cách chân dốc 420 m.