Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài 5 trang 71 Toán 10 tập 1 – Cánh diều: Cho...

Bài 5 trang 71 Toán 10 tập 1 – Cánh diều: Cho tam giác ABC. Chứng minh:...

Giải bài 5 trang 71 SGK Toán 10 tập 1 – Cánh diều - Bài 1. Giá trị lượng giác của một góc từ 0 đến 180. Định lí cosin và định lí sin trong tam giác

Question - Câu hỏi/Đề bài

Cho tam giác ABC. Chứng minh:

a) \(\sin \frac{A}{2} = \cos \frac{{B + C}}{2}\)

b) \(\tan \frac{{B + C}}{2} = \cot \frac{A}{2}\)

Bước 1: Tìm mối liên hệ giữa góc \(\frac{{\widehat A}}{2}\) và góc \(\frac{{\widehat B + \widehat C}}{2}\)

Bước 2: Áp dung: \(\sin \alpha  = \cos \left( {{{90}^o} - \alpha } \right)\)và \(\tan \alpha  = \cot \left( {{{90}^o} - \alpha } \right)\) suy ra đpcm.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Xét tam giác ABC, ta có:

\(\widehat A + \widehat B + \widehat C = {180^o} \Rightarrow \frac{{\widehat A}}{2} + \frac{{\widehat B + \widehat C}}{2} = {90^o}\)

Do đó \(\frac{{\widehat A}}{2}\) và \(\frac{{\widehat B + \widehat C}}{2}\) là hai góc phụ nhau.

a) Ta có: \(\sin \frac{A}{2} = \cos \left( {{{90}^o} - \frac{A}{2}} \right) = \cos \frac{{B + C}}{2}\)

b) Ta có: \(\tan \frac{{B + C}}{2} = \cot \left( {{{90}^o} - \frac{{B + C}}{2}} \right) = \cot \frac{A}{2}\)