Chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương đầu tiên. Tính xác suất của các biến cố:
a) A: “Hai số được chọn là số chẵn”;
b) B: “Hai số được chọn là số lẻ”;
c) C: “Tổng của hai số được chọn là số chẵn”.
- Xác định số phần tử của không gian mẫu.
- Xác định số phần tử của các biến cố.
Mỗi cách chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương cho ta một tổ hợp chập 2 của 21 phần tử. Do đó, không gian mẫu Ω gồm các phần tử chập 2 của 21 phần tử và \(n\left( \Omega \right) = C_{21}^2 = 210.\)
a) Ta thấy trong 21 số nguyên dương đầu tiên có 10 số chẵn.
Advertisements (Quảng cáo)
Suy ra số các kết quả thuận lợi cho biến cố A là \(n\left( A \right) = C_{10}^2 = 45.\)
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{45}}{{210}} = \frac{3}{{14}}.\)
b) Ta thấy trong 21 số nguyên dương đầu tiên có 11 số lẻ.
Suy ra số các kết quả thuận lợi cho biến cố B là \(n\left( B \right) = C_{11}^2 = 55.\)
Xác suất của biến cố B là: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{55}}{{210}} = \frac{{11}}{{42}}.\)
c) Ta thấy, tổng của hai số được chọn là số chẵn khi hai số đó phải cùng chẵn hoặc cùng lẻ.
Ta có: \(C = A \cup B,{\rm{ }}A \cap B = \emptyset \Rightarrow n\left( C \right) = n\left( A \right) + n\left( B \right).\)
Suy ra số các kết quả thuận lợi cho biến cố C là:
\(n\left( C \right) = n\left( A \right) + n\left( B \right) = 45 + 55 = 100.\)
Xác suất của biến cố C là: \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{100}}{{210}} = \frac{{10}}{{21}}.\)