Với mẫu số liệu ghép nhóm thu được ở Bài 4, xác định các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm đó (làm tròn các kết quả đến hàng phần mười).
Áp dụng các công thức đã học để xác định các đại lượng tiêu biểu.
- Chỉ số đường huyết trung bình của 28 người cao tuổi là:
\(\bar x = \frac{{7,1.7 + 7,3.6 + 7,5.7 + 7,7.5 + 7,9.3}}{{28}} \approx 7,4\) (mmol/L).
- Ta có: \(\frac{n}{2} = \frac{{28}}{2} = 14\) mà \(13
Xét nhóm 3 là nhóm [7,4;7,6) có \(r = 7,4,{\rm{ }}d = 0,2,{\rm{ }}{n_3} = 7\) và nhóm 2 là nhóm [4;8) có \(c{f_2} = 13.\)
Trung vị của mẫu số liệu là:
\({M_e} = r + \left( {\frac{{\frac{n}{2} - c{f_{k - 1}}}}{{{n_k}}}} \right).d = 7,4 + \left( {\frac{{14 - 13}}{7}} \right).0,2 \approx 7,4\) (mmol/L).
Tứ phân vị thứ hai của mẫu số liệu là: \({Q_2} = {M_e} = 7,4\) (mmol/L).
- Ta có: \(\frac{n}{4} = \frac{{28}}{4} = 7\) mà \(7 = 7
Advertisements (Quảng cáo)
Xét nhóm 2 là nhóm [7,2;7,4) có \(s = 7,2,{\rm{ }}h = 0,2,{\rm{ }}{n_2} = 6\) và nhóm 1 là nhóm [7,0;7,2) có \(c{f_1} = 7.\)
Tứ phân vị thứ nhất của mẫu số liệu là:
\({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h = 7,2 + \left( {\frac{{7 - 7}}{6}} \right).0,2 = 7,2\) (mmol/L).
- Ta có: \(\frac{{3n}}{4} = \frac{{3.28}}{4} = 21\) mà \(20
Xét nhóm 4 là nhóm [7,6;7,8) có \(t = 7,6,{\rm{ }}l = 0,2,{\rm{ }}{n_4} = 5\) và nhóm 3 là nhóm [7,4;7,6) có \(c{f_3} = 20.\)
Tứ phân vị thứ ba của mẫu số liệu là:
\({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l = 7,6 + \left( {\frac{{21 - 20}}{5}} \right).0,2 \approx 7,6\)(mmol/L).
- Ta thấy: Nhóm 1 ứng với nửa khoảng [7,0;7,2) và nhóm 3 ứng với nửa khoảng [7,4;7,6) là hai nhóm có tần số lớn nhất.
+ Xét nhóm [7,0;7,2) với \(u = 7,{\rm{ }}g = 0,2,{\rm{ }}{n_1} = 7,{\rm{ }}{n_0} = 0,{\rm{ }}{n_2} = 6\):
\({M_0} = u + \left( {\frac{{{n_i} - {n_{i - 1}}}}{{2{n_i} - {n_{i - 1}} - {n_{i + 1}}}}} \right).g = 7 + \left( {\frac{{7 - 0}}{{2.7 - 0 - 6}}} \right).0,2 \approx 7,2\) (mmol/L).
+ Xét nhóm [7,4;7,6) với \(u = 7,4,{\rm{ }}g = 0,2,{\rm{ }}{n_3} = 7,{\rm{ }}{n_2} = 6,{\rm{ }}{n_4} = 5\):
\({M’_0} = u + \left( {\frac{{{n_i} - {n_{i - 1}}}}{{2{n_i} - {n_{i - 1}} - {n_{i + 1}}}}} \right).g = 7,4 + \left( {\frac{{7 - 6}}{{2.7 - 6 - 5}}} \right).0,2 \approx 7,4\) (mmol/L).