Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 51 trang 117 SBT Toán 11 – Cánh diều: Cho tứ...

Bài 51 trang 117 SBT Toán 11 - Cánh diều: Cho tứ diện \(ABCD\) có \(M\), \(N\) lần lượt là trung điểm của các cạnh \(AB\), \(CD\)...

Sử dụng các tính chất của phép chiếu song song. Phân tích và lời giải - Bài 51 trang 117 sách bài tập toán 11 - Cánh diều - Bài 6. Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối. Cho tứ diện (ABCD) có (M), (N) lần lượt là trung điểm của các cạnh (AB), (CD)...

Question - Câu hỏi/Đề bài

Cho tứ diện \(ABCD\) có \(M\), \(N\) lần lượt là trung điểm của các cạnh \(AB\), \(CD\). Xác định ảnh của tứ diện \(ABCD\) qua phép chiếu song song có phương chiếu là đường thẳng \(MN\), mặt phẳng chiếu là mặt phẳng \(\left( Q \right)\) bất kì cắt đường thẳng \(MN\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng các tính chất của phép chiếu song song.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Gọi \(f\) là phép chiếu song song có phương chiếu là đường thẳng \(MN\), mặt phẳng chiếu là mặt phẳng \(\left( Q \right)\) bất kì cắt \(MN\).

Nhận xét rằng hình chiếu của song song của đoạn thẳng \(MN\) theo phép chiếu \(f\) là một điểm. Gọi điểm đó là \(I\).

Gọi \(A’\), \(B’\), \(C’\), \(D’\) lần lượt là hình chiếu của \(A\), \(B\), \(C\), \(D\) theo phép chiếu \(f\).

Do phép chiếu song song không làm thay đổi tỉ số giữa các đoạn thẳng cùng nằm trên 1 đường thẳng, nên do \(M\) là trung điểm của \(AB\) nên \(I\) là trung điểm của \(A’B’\). Tương tự, \(I\) là trung điểm của \(C’D’\). Suy ra \(A’C’B’D’\) là hình bình hành.

Vậy hình chiếu của tứ diện \(ABCD\) là hình bình hành \(A’C’B’D’\) và hai đường chéo \(A’B’\), \(C’D’\) của nó.

Advertisements (Quảng cáo)