Cho bốn điểm \(A\), \(B\), \(C\), \(D\) không cùng thuộc một mặt phẳng. Khẳng định nào sau đây là SAI?
A. Bốn điểm \(A\), \(B\), \(C\), \(D\) đã cho đôi một khác nhau.
B. Không có ba điểm nào trong bốn điểm \(A\), \(B\), \(C\), \(D\) thẳng hàng.
C. Hai đường thẳng \(AC\) và \(BD\) song song với nhau.
D. Hai đường thẳng \(AC\) và \(BD\) không có điểm chung với nhau.
Sử dụng định nghĩa và các tính chất của tứ diện.
Advertisements (Quảng cáo)
Đáp án A hiển nhiên đúng. Nếu có 2 điểm trùng nhau thì sẽ tồn tại một mặt phẳng chứa cả 4 điểm, do đó nó không phải là tứ diện.
Đáp án B đúng, do nếu tồn tại 3 điểm thẳng hàng thì sẽ tồn tại một mặt phẳng chứa đường thẳng đi qua 3 điểm thẳng hàng và điểm còn lại.
Đáp án C sai, do \(AC\) và \(BD\) không cùng nằm trong một mặt phẳng, nên chúng không thể song song với nhau.
Đáp án D đúng, do \(AC\) và \(BD\) là 2 đường thẳng chéo nhau.
Vậy đáp án cần chọn là C.