Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Bài 3 trang 14 Toán 11 tập 2 – Cánh Diều: Mốt...

Bài 3 trang 14 Toán 11 tập 2 - Cánh Diều: Mốt của mẫu số liệu ghép nhóm trên là bao nhiêu?...

- Áp dụng các công thức vừa được học để xác định các đại lượng tiêu biểu . Hướng dẫn giải bài 3 trang 14 SGK Toán 11 tập 2 - Cánh Diều Bài 1. Các số đặc trưng xu thế trung tâm cho mẫu số liệu ghép nhóm. Bảng 15 cho ta bảng tần số ghép nhóm số liệu thống kê chiều cao 40 mẫu cây... Mốt của mẫu số liệu ghép nhóm trên là bao nhiêu?

Question - Câu hỏi/Đề bài

Bảng 15 cho ta bảng tần số ghép nhóm số liệu thống kê chiều cao 40 mẫu cây ở một vườn thực vật (đơn vị: centimet).

a) Xác định số trung bình cộng, trung vị, tứ phân vị của mẫu số liệu ghép nhóm trên.

b) Mốt của mẫu số liệu ghép nhóm trên là bao nhiêu?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Áp dụng các công thức vừa được học để xác định các đại lượng tiêu biểu

Answer - Lời giải/Đáp án

a) Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:

\(\overline x = \frac{{35.4 + 45.10 + 55.14 + 65.6 + 75.4 + 85.2}}{{40}} = 55,5\)

⦁ Số phần tử của mẫu là n = 40. Ta có: \(\frac{n}{2} = \frac{{40}}{2} = 20\)

Mà \(14 < 20 < 28\) nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.

Xét nhóm 3 là nhóm \(\left[ {50;60} \right)\)có \(r = 50,d = 10,{n_3} = 14\) và nhóm 2 là nhóm \(\left[ {40;50} \right)\)có \(c{f_2} = 14\).

Advertisements (Quảng cáo)

Áp dụng công thức, ta có trung vị của mẫu số liệu là:

\({M_e} = 50 + \frac{{20 - 14}}{{14}}.10 \approx 54,29\,(cm)\)

Do đó tứ phân vị thứ hai là \({Q_2} = {M_e} \approx 54,29\,\,(cm)\)

⦁ Ta có: \(\frac{n}{4} = \frac{{40}}{4} = 10\). Mà \(4 < 10 < 14\)nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.

Xét nhóm 2 là nhóm \(\left[ {40;50} \right)\)có \(s = 40,h = 10,{n_2} = 10\)và nhóm 1 là nhóm \(\left[ {30;40} \right)\)có \(c{f_1} = 4\).

Áp dụng công thức, ta có tứ phân vị thứ nhất là:

\({Q_1} = 40 + \frac{{10 - 4}}{{10}}.10 = 46\,(cm)\)

⦁ Ta có: \(\frac{{3n}}{4} = \frac{{3.40}}{4} = 30\). Mà \(28 < 30 < 34\)nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.

Xét nhóm 4 là nhóm \(\left[ {60;70} \right)\)có \(t = 60,l = 10,{n_4} = 6\)và nhóm 3 là nhóm \(\left[ {50;60} \right)\)có \(c{f_3} = 28\).

Áp dụng công thức, ta có tứ phân vị thứ ba là:

\({Q_3} = 60 + \frac{{30 - 28}}{6}.10 \approx 63,33\,(cm)\)

b) Nhóm 3 là nhóm \(\left[ {50;60} \right)\)có tần số lớn nhất với \(u = 50,g = 10,{n_3} = 14\)và nhóm 2 có tần số \({n_2} = 10\), nhóm 4 có tần số \({n_4} = 6\).

Áp dụng công thức, ta có mốt của mẫu số liệu là:

\({M_O} = 50 + \frac{{14 - 10}}{{2.14 - 10 - 6}}.10 \approx 53,33\,(cm)\)

Advertisements (Quảng cáo)