Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Bài 4.31 trang 124 Toán 11 tập 1 – Cùng khám phá:...

Bài 4.31 trang 124 Toán 11 tập 1 - Cùng khám phá: Cho hình hộp ABCD. A’B’C’D’. Gọi M, N, P lần lượt là các điểm nằm trên AA’, AB...

(P) chứa 2 đường thẳng cắt nhau lần lượt song song với (Q) thì (P) // (Q). Phân tích và giải - Bài 4.31 trang 124 SGK Toán 11 tập 1 - Cùng khám phá - Bài tập cuối chương 4. Cho hình hộp ABCD. A'B'C'D'. Gọi M, N, P lần lượt là các điểm nằm trên AA', AB, DC sao cho \(\frac{{AM}}{{AA'}} = \frac{{AN}}{{AB}} = \frac{{DP}}{{DC}} = \frac{1}{3}\)...

Question - Câu hỏi/Đề bài

Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P lần lượt là các điểm nằm trên AA’, AB, DC sao cho \(\frac{{AM}}{{AA’}} = \frac{{AN}}{{AB}} = \frac{{DP}}{{DC}} = \frac{1}{3}\).

a) Chứng minh mặt phẳng (MNP) song song với (A’BC).

b) Gọi Q là giao điểm của AC’ với (MNP). Xét vị trí tương đối của MQ và A’C.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) (P) chứa 2 đường thẳng cắt nhau lần lượt song song với (Q) thì (P) // (Q).

b) Tìm giao điểm của đường thẳng a và mặt phẳng (P):

+ Bước 1: Chọn 1 mặt phẳng (Q) chứa a. Tìm giao tuyến d của (P) và (Q)

+ Bước 2: Tìm giao điểm I của a và d. I chính là giao điểm của a và (P).

Answer - Lời giải/Đáp án

a) Xét tam giác ABA’ có \(\frac{{AM}}{{AA’}} = \frac{{AN}}{{AB}} = \frac{1}{3}\) nên MN // A’B. Suy ra MN // (A’BC) (1)

Xét hình bình hành ABCD có \(\frac{{AN}}{{AB}} = \frac{{DP}}{{DC}} = \frac{1}{3}\) nên NP // BC. Suy ra NP // (A’BC) (2)

Advertisements (Quảng cáo)

Từ (1), (2) suy ra (MNP) // (A’BC)

b) Trong (ABB’A’), gọi E là giao điểm của AB’ và MN

Suy ra E là điểm chung của (AB’C’) và (MNP). Mà NP // B’C’ (cùng // BC)

Qua E kẻ đường thẳng d song song với NP và B’C’, cắt EP tại F. Suy ra EF là giao tuyến của (MNP) và (AB’C’)

Trong (AB’C’), gọi Q là giao điểm của EF và AC’

Vậy Q là giao điểm của AC’ và (MNP)

Trong (ABB’A’), gọi O là giao điểm của A’B và AB’

Xét tam giác ABO có NE // BO nên \(\frac{{AN}}{{AB}} = \frac{{AE}}{{AO}} = \frac{1}{3}\)

Ta có: AA’ // CC’ (cùng // BB’) và AA’ = CC’ (cùng bằng BB’) nên ACC’A’ là hình bình hành

Trong (AA’C’C), gọi G là giao điểm của AC’ và A’C. Suy ra G là trung điểm của AC’ và A’C

Xét tam giác AB’C’ có O, G là trung điểm của AB’, AC’ nên OG // B’C’. Suy ra OG // NQ \( \Rightarrow \frac{{AE}}{{AO}} = \frac{{AQ}}{{AG}} = \frac{1}{3}\)

Xét tam giác AA’G có: \(\frac{{AM}}{{AA’}} = \frac{{AQ}}{{AG}} = \frac{1}{3} \Rightarrow MQ\,{\rm{// }}A’G\) hay MQ // A’C.

Advertisements (Quảng cáo)