Cho mẫu số liệu ghép nhóm về tuổi thọ của 20 thiết bị điện tử sau:
Khoảng tứ phân vị (làm tròn đế chữ số thập phân thứ hai) của mẫu số liệu ghép nhóm trên là
A. 2,68.
B. 4,75.
C. 6,00.
D. 7,43.
Xác định vị trí của tứ phân vị thứ nhất và thứ ba, nằm trong nhóm nào. Từ đó dùng công thức để tính \({Q_1}\) và \({Q_3}\) sau đó suy ra được \({\Delta _Q}\).
Advertisements (Quảng cáo)
Đáp án: A.
Cỡ mẫu là \(n = 20\).
Vị trí của \({Q_1}\) là \(\frac{n}{4} = 5\) suy ra nhóm chứa tứ phân vị thứ nhất là \(\left[ {4;6} \right)\).
Ta có \({Q_1} = 4 + \frac{{\frac{{1 \cdot 20}}{4} - 2}}{8} \cdot 2 = 4,75\).
Tương tự có vị trí của \({Q_3}\) là \(\frac{{3n}}{4} = 15\) suy ra nhóm chứa tứ phân vị thứ ba là \(\left[ {6;8} \right)\).
Do đó \({Q_3} = 6 + \frac{{\frac{{3 \cdot 20}}{4} - 10}}{7} \cdot 2 = \frac{{52}}{7}\).
Suy ra khoảng tứ phân vị là \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{52}}{7} - 4,75 = \frac{{75}}{{28}} \approx 2,68\).
Vậy ta chọn đáp án A.