Trang chủ Lớp 6 Sách bài tập Toán 6 - Cánh diều Giải Bài 71 trang 88 SBT Toán 6 – Cánh diều: Tìm...

Giải Bài 71 trang 88 SBT Toán 6 - Cánh diều: Tìm số nguyên x, sao cho: A= x2 +2 021 đạt giá trị nhỏ nhất B= 2 021 – 20...

X2k \( \ge \) 0, với mọi x (k là số tự nhiên) Biểu thức A chứa x nhỏ nhất bằng m khi A \( \ge \) m. Hướng dẫn cách giải/trả lời Bài 71 trang 88 sách bài tập (SBT) Toán 6 - Cánh diều - Bài tập cuối chương II. Tìm số nguyên x, sao cho: a) A= x^2 +2 021 đạt giá trị nhỏ nhấtb) B= 2 021 – 20. x^20 – 22x^22 đạt giá trị lớn nhất...

Question - Câu hỏi/Đề bài

Tìm số nguyên x, sao cho:

a) A= x2 +2 021 đạt giá trị nhỏ nhất

b) B= 2 021 – 20. x20 – 22x22 đạt giá trị lớn nhất.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

x2k \( \ge \) 0, với mọi x (k là số tự nhiên)

Biểu thức A chứa x nhỏ nhất bằng m khi A \( \ge \) m, với mọi x

Advertisements (Quảng cáo)

Biểu thức B chứa x lớn nhất bằng c nếu B \( \le \) c, với mọi x

Answer - Lời giải/Đáp án

a) Vì x2 \( \ge \) 0, với mọi x nên x2 +2 021 \( \ge \)2 021, với mọi x

Nên A đạt giá trị nhỏ nhất = 2 021 khi x = 0

b) Vì x20 , x22 \( \ge \) 0, với mọi x nên – 20. x20 – 22x22 \( \le \) 0, với mọi x. Do đó, 2 021 – 20. x20 – 22x22 \( \le \) 2 021, với mọi x

Nên B đạt giá trị lớn nhất = 2 021 khi x = 0

Advertisements (Quảng cáo)