Cho tam giác ABC có M là giao điểm của hai đường phân giác của góc B và góc C. Cho biết \(\widehat {BMC} = {132^o}\). Tính số đo các góc \(\widehat {MAB}\) và \(\widehat {MAC}\).
Sử dụng tính chất tia phân giác của các góc trong một tam giác để tính số đo góc cần tìm.
Advertisements (Quảng cáo)
Ta có \(\widehat {MBC} + \widehat {MCB} = {180^o} - \widehat {BMC} = {180^o} - {132^o} = {48^o}\)
Do BM và CM là phân giác các góc \(\widehat B\) và \(\widehat C\) của tam giác ABC nên ta có:
\(\widehat B + \widehat C = 2\left( {\widehat {MBC} + \widehat {MCB}} \right) = {2.48^o} = {96^o}\)
Suy ra: \(\widehat {{A^{}}} = {180^o} - \left( {\widehat B + \widehat C} \right) = {180^o} - {96^o} = {84^o}\)
Do AM là phân giác của góc A của tam giác ABC nên ta có:
\(\widehat {MAB} = \widehat {MAC} = \frac{{\widehat {{A^{}}}}}{2} = \frac{{{{84}^o}}}{2} = {42^o}\)