Xuân bỏ một số viên bi xanh và đỏ có kích thước và khối lượng giống nhau vào túi. Mỗi lần Xuân lấy ra ngẫu nhiên 1 viên bi, xem màu của nó rồi trả lại túi. Lặp lại phép thử đó 100 lần, Xuân thấy có 40 lần mình lấy được bi đỏ. Biết rằng trong túi có 9 viên bi xanh, hãy ước lượng xem trong túi có bao nhiêu viên bi đỏ.
Gọi \(P\left( A \right)\) là xác suất xuất hiện biến cố \(A\) khi thực hiện một phép thử.
Gọi \(n\left( A \right)\) là số lần xuất hiện biến cố \(A\) khi thực hiện phép thử đó \(n\) lần.
Xác suất thực nghiệm của biến cố \(A\) là tỉ số \(\frac{{n\left( A \right)}}{n}\)
Khi \(n\) càng lớn, xác suất thực nghiệm của biến cố \(A\) càng gần \(P\left( A \right)\).
Advertisements (Quảng cáo)
Gọi số viên bi đỏ trong túi là \(N\). Khi đó tổng số viên bi trong túi là \(N + 9\).
Xác suất lí thuyết của biến cố lấy được viên bi đỏ là \(\frac{N}{{N + 9}}\)
Vì sau 100 lần lấy bi thì có 40 lần được bi đỏ nên xác suất thực nghiệm là \(\frac{{40}}{{100}} = \frac{2}{5}\)
Vì số lần lấy bi là lớn nên
\(\frac{N}{{N + 9}} \approx \frac{2}{5} \Leftrightarrow 2.\left( {N + 9} \right) \approx 5N \Leftrightarrow 5N \approx 2N + 18 \Leftrightarrow 3N \approx 18 \Leftrightarrow N \approx 6\)
Vậy trong túi có khoảng 6 viên bi đỏ.