Trang chủ Lớp 9 SGK Toán 9 - Cánh diều Bài 9 trang 43 Toán 9 Cánh diều tập 1: Một nhà...

Bài 9 trang 43 Toán 9 Cánh diều tập 1: Một nhà máy sản xuất xi măng mỗi ngày đều sản xuất được 100 tấn xi măng...

Đặt ẩn \(x\); + Biểu diễn các đại lượng theo \(x\); + Giải bất phương trình; + Kết luận bài toán. Phân tích và giải bài tập 9 trang 43 SGK Toán 9 tập 1 - Cánh diều Bài tập cuối chương 2. Một nhà máy sản xuất xi măng mỗi ngày đều sản xuất được 100 tấn xi măng. Lượng xi măng tồn trong kho của nhà máy là 300 tấn...Một nhà máy sản xuất xi măng mỗi ngày đều sản xuất được 100 tấn xi măng

Question - Câu hỏi/Đề bài

Một nhà máy sản xuất xi măng mỗi ngày đều sản xuất được 100 tấn xi măng. Lượng xi măng tồn trong kho của nhà máy là 300 tấn. Hỏi nhà máy đó cần ít nhất bao nhiêu ngày để có thể xuất đi 15 300 tấn xi măng (tính cả lượng tồn trong kho)?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Đặt ẩn \(x\);

+ Biểu diễn các đại lượng theo \(x\);

+ Giải bất phương trình;

+ Kết luận bài toán.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Gọi số ngày ít nhất nhà máy sản xuất 15 300 tấn xi măng là \(x\) (ngày, \(x \in {\mathbb{N}^*}\))

Số tấn xi măng \(x\) ngày, nhà máy sản xuất được: \(100x\) (tấn)

Do nhà máy cần xuất 15 300 tấn xi măng (tính cả lượng tồn trong kho) nên ta có

\(100x + 300 \ge 15300\)

Giải bất phương trình trên, ta có:

\(\begin{array}{l}100x + 300 \ge 15300\\100x \ge 15000\\x \ge 150\end{array}\)

Vậy nhà máy cần ít nhất 150 ngày để có thể xuất đi 15 300 tấn xi măng.

Advertisements (Quảng cáo)