Hoạt động1
Trả lời câu hỏi Hoạt động 1 trang 5
a. Cho hai số thực \(u,v\) có tích \(uv = 0\). Có nhận xét gì về giá trị của u, v?
b. Cho phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\).
- Chứng tỏ rằng nghiệm của phương trình \(x - 3 = 0\) và nghiêm của phương trình \(2x + 1 = 0\) đều là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\).
- Giả sử \(x = {x_0}\) là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\) . Giá trị \(x = x_0^{}\) có phải là nghiệm của phương trình \(x - 3 = 0\) hoặc phương trình \(2x + 1 = 0\) hay không?
+ Dựa vào phương trình đã học ở lớp 8 để nhận xét phương trình.
+ Giải phương trình tìm nghiệm.
+ Thay nghiệm vào phương trình tích để chứng tỏ.
a. Nhận xét: u = 0 hoặc v = 0.
b.
Ý 1:
+ Ta có: \(x - 3 = 0 \) suy ra \(x = 3\).
+ Ta có: \(2x + 1 = 0 \) suy ra \(x = - \frac{1}{2}\).
Ý 2:
+ Thay \(x = 3\) vào phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\) ta được:
\(\left( {3 - 3} \right)\left( {2.3 + 1} \right) = 0 \Leftrightarrow 0.7 = 0 \Leftrightarrow 0 = 0\) (luôn đúng).
Vậy \(x = 3\) là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\).
+ Thay \(x = - \frac{1}{2}\) vào phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\) ta được:
\(\left( { - \frac{1}{2} - 3} \right)\left[ {2.\left( { - \frac{1}{2}} \right) + 1} \right] = 0 \Leftrightarrow - \frac{7}{2}.0 = 0 \Leftrightarrow 0 = 0\) (luôn đúng).
Vậy \(x = - \frac{1}{2}\) là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\).
Ý 3:
Khi \(x = x_0^{}\) là nghiệm của phương trình \(\left( {x - 3} \right)\left( {2x + 1} \right) = 0\) thì \(x = x_0^{}\) có là nghiệm của phương trình \(x - 3 = 0\) hoặc phương trình \(2x + 1 = 0\).
Luyện tập1
Trả lời câu hỏi Luyện tập 1 trang 6
Giải phương trình: \(\left( {4x + 5} \right)\left( {3x - 2} \right) = 0\).
+ Giải hai phương trình bậc nhất.
+ Kết luận phương trình.
Để giải phương trình trên ta giải hai phương trình sau:
*)\(4x + 5 = 0\)
\(x = - \frac{5}{4}\);
Advertisements (Quảng cáo)
*)\(3x - 2 = 0\)
\(x = \frac{2}{3}\).
Vậy phương trình đã cho có hai nghiệm là \(x = - \frac{5}{4}\) và \(x = \frac{2}{3}\).
Luyện tập2
Trả lời câu hỏi Luyện tập 2 trang 7
Giải các phương trình:
a. \({x^2} - 10x + 25 = 5\left( {x - 5} \right)\);
b. \(4{x^2} - 16 = 5\left( {x + 2} \right)\).
+ Chuyển phương trình về phương trình tích.
+ Giải các phương trình trong tích.
+ Kết luận nghiệm.
a. \({x^2} - 10x + 25 = 5\left( {x - 5} \right)\)
Ta có: \({x^2} - 10x + 25 = 5\left( {x - 5} \right)\)
\(\begin{array}{l}{\left( {x - 5} \right)^2} = 5\left( {x - 5} \right)\\{\left( {x - 5} \right)^2} - 5\left( {x - 5} \right) = 0\\\left( {x - 5} \right)\left( {x - 5 - 5} \right) = 0\end{array}\)
\(\left( {x - 5} \right)\left( {x - 10} \right) = 0.\)
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(x - 5 = 0\)
\(x = 5;\)
*) \(x - 10 = 0\)
\(x = 10.\)
Vậy phương trình đã cho có hai nghiệm là \(x = 5\) và \(x = 10\).
b. \(4{x^2} - 16 = 5\left( {x + 2} \right)\)
Ta có: \(4{x^2} - 16 = 5\left( {x + 2} \right)\)
\( 4 \left( x^2 - 4 \right) - 5 \left( x +2 \right) = 0\)
\(4 \left( x - 2 \right) \left( x +2 \right) - 5 \left( x +2 \right) = 0\)
\(\left( x +2 \right) \left[ 4(x-2) -5 \right]=0\)
\((x+2)(4x-13) = 0\)
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(x +2 = 0\)
\(x=-2;\)
*) \(4x-13= 0\)
\(x = \frac{13}{4}.\)
Vậy phương trình đã cho có hai nghiệm là \(x = -2\) và \(x = \frac{13}{4}\).