Hoạt động2
Trả lời câu hỏi Hoạt động 2 trang 7
Cho phương trình: \(\frac{{x + 2}}{x} = \frac{{x - 3}}{{x - 2}}\,\,\left( 1 \right)\).
Tìm điều kiện của \(x\) để cả hai mẫu thức có trong phương trình (1) là khác 0.
Cho mẫu của cả hai phân thức rồi giải điều kiện.
Cho mẫu của cả hai phân thức rồi giải điều kiện.
Để mẫu thức trong phương trình (1) khác 0.
\(\left\{ \begin{array}{l}x \ne 0\\x - 2 \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x \ne 0\\x \ne 2\end{array} \right.\)
Vậy \(x \ne 0;x \ne 2\) thì mẫu thức trong phương trình (1) khác 0.
Luyện tập3
Trả lời câu hỏi Luyện tập 3 trang 7
Tìm điều kiện xác định của phương trình \(\frac{{x - 8}}{{x - 7}} = 8 + \frac{1}{{1 - x}}\).
Cho tất cả các mẫu của phương trình khác 0 để tìm điều kiện xác định của phương trình.
Điều kiện xác định của phương trình \(\frac{{x - 8}}{{x - 7}} = 8 + \frac{1}{{1 - x}}\) là \(x - 7 \ne 0\) và \(1 - x \ne 0\) hay \(x \ne 7\) và \(x \ne 1\).
Hoạt động3
Trả lời câu hỏi Hoạt động 3 trang 8
Cho phương trình: \(\frac{{2x + 1}}{{2x}} = 1 - \frac{2}{{x - 3}}\,\,\,\left( 2 \right)\)
Hãy giả phương trình (2) theo các bước sau:
a. Tìm điều kiện xác định của phương trình (2).
b. Tìm mẫu thức chung, quy đồng mẫu thức các phân thức ở hai vế của phương trình (2) và khử mẫu.
c. Giải phương trình vừa tìm được.
d. Kiểm tra điều kiện xác định của phương trình (2) đối với các giá trị của ẩn vừa tìm được rồi kết luận.
+ Bước 1: Cho mẫu thức khác 0.
+ Bước 2:
- Nhân các mẫu thức với nhau để được mẫu thức chung.
- Chia mẫu thức chung cho các mẫu thức rồi nhân lên tử để quy đồng mẫu thức.
- Khử mẫu.
+ Bước 3: Chuyển về các phương trình bậc nhất hoặc phương trình tích để giải phương trình.
+ Bước 4: Kiểm tra lại điều kiện với nghiệm vừa tìm được.
+ Bước 5: Kết luận nghiệm.
a. Điều kiện xác định của phương trình \(\frac{{2x + 1}}{{2x}} = 1 - \frac{2}{{x - 3}}\) là \(2x \ne 0\) và \(x - 3 \ne 0\) hay \(x \ne 0\) và \(x \ne 3\).
b.
+ Mẫu thức chung của phương trình là: \(2x\left( {x - 3} \right)\).
+ Quy đồng mẫu thức: \(\frac{{\left( {2x + 1} \right)\left( {x - 3} \right)}}{{2x\left( {x - 3} \right)}} = \frac{{2x\left( {x - 3} \right)}}{{2x\left( {x - 3} \right)}} - \frac{{4x}}{{2x\left( {x - 3} \right)}}\).
+ Khử mẫu: \(\left( {2x + 1} \right)\left( {x - 3} \right) = 2x\left( {x - 3} \right) - 4x\).
c. Giải phương trình:\(\left( {2x + 1} \right)\left( {x - 3} \right) = 2x\left( {x - 3} \right) - 4x\).
\(\begin{array}{l}2{x^2} - 6x + x - 3 = 2{x^2} - 6x - 4x\\2{x^2} - 6x + x - 3 - 2{x^2} + 6x + 4x = 0\\5x - 3 = 0\end{array}\)
\(x = \frac{3}{5}\).
Advertisements (Quảng cáo)
d. Ta thấy \(x = \frac{3}{5}\) thỏa mãn điều kiện xác định của phương trình.
Luyện tập4
Trả lời câu hỏi Luyện tập 4 trang 9
Giải phương trình: \(\frac{x}{{x - 2}} + \frac{1}{{x - 3}} = \frac{2}{{\left( {2 - x} \right)\left( {x - 3} \right)}}\).
+ Tìm điều kiện xác định của phương trình.
+ Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.
+ Giải phương trình vừa tìm được.
+ Kết luận nghiệm.
Điều kiện xác định: \(x \ne 2\) và \(x \ne 3\)
\(\frac{x}{{x - 2}} + \frac{1}{{x - 3}} = \frac{2}{{\left( {2 - x} \right)\left( {x - 3} \right)}}\)
\(\begin{array}{l}\frac{{x\left( {x - 3} \right)}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} + \frac{{x - 2}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = - \frac{2}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\\\frac{{{x^2} - 3x}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} + \frac{{x - 2}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = - \frac{2}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\\{x^2} - 3x + x - 2 = - 2\\{x^2} - 2x - 2 + 2 = 0\\{x^2} - 2x = 0\end{array}\)
\(x\left( {x - 2} \right) = 0\).
Để giải phương trình trên, ta giải hai phương trình:
*) \(x = 0\). *)\(x - 2 = 0\)
\(x = 2\).
Ta thấy:
+ \(x = 0\) thỏa mãn điều kiện xác định của phương trình;
+ \(x = 2\) không thỏa mãn điều kiện xác định của phương trình.
Vậy phương trình đã cho có nghiệm \(x = 0\).
Luyện tập5
Trả lời câu hỏi Luyện tập 5 trang 10
Một đội công nhân làm đường nhận nhiệm vụ trải nhựa \(8100{m^2}\) mặt đường. Ở giai đoan đầu, đội trải được \(3600{m^2}\) mặt đường. Ở giai đoạn hai đội công nhân tăng năng suất thêm \(300{m^2}/\)ngày rồi hoàn thành công việc. Hỏi đội công nhân đã hoàn thành công việc trong bao nhiêu ngày? Biết rằng năng suất lao động của đội không thay đổi ở mỗi giai đoạn và thời gian làm việc của hai giai đoạn là như nhau.
+ Gọi ẩn x, tìm điều kiện và đơn vị của x.
+ Biểu diễn các đại lượng theo x.
+ Tìm phương trình liên hệ giữa các đại lượng.
+ Giải phương trình.
+ Đối chiếu với điều kiện của x.
+ Kết luận x.
Gọi số ngày đội công nhân hoàn thành công việc là: x (ngày, x > 0).
Thời gian làm việc của đội ở mỗi giai đoạn là: \(\frac{x}{2}\) (ngày).
Năng suất lao động của đội ở giai đoạn 1 là: \(3600:\frac{x}{2} = 7200x\) (\(m^2\)/ngày).
Giai đoạn 2 đội trải được: \(8100 - 3600 = 4500\left( {{m^2}} \right)\)
Năng suất lao động của đội ở giai đoạn 2 là: \(4500:\frac{x}{2} = 9000x\) (\(m^2\)/ngày).
Do giai đoạn hai, đội công nhân tăng năng suất thêm \(300\) (\(m^2\)/ngày). Ta có phương trình:
\(9000x - 7200x = 300\).
Giải phương trình: \(9000x - 7200x = 300\)
\(1800x = 300\)
\(x = \frac{1}{6}\) (thỏa mãn điều kiện x > 0).
Vậy đội công nhân hoàn thành công việc trong \(\frac{1}{6}\) ngày.