Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài 5 trang 27 SBT Toán 10 Cánh Diều: Một sân bóng...

Bài 5 trang 27 SBT Toán 10 Cánh Diều: Một sân bóng đá có dạng hình chữ nhật với chiều dài và chiều rộng của sân lần lượt l...

Giải bài 5 trang 27 sách bài tập toán 10 - Cánh diều - Bài 1. Số gần đúng. Sai số

Question - Câu hỏi/Đề bài

Một sân bóng đá có dạng hình chữ nhật với chiều dài và chiều rộng của sân lần lượt là 105 m và 68 m. Khoảng cách xa nhất giữa hai vị trí trên sân đúng bằng độ dài đường chéo của sân. Tìm một giá trị gần đúng (theo đơn vị mét) của độ dài đường chéo sân và tìm độ chính xác, sai số tương đối của số gần đúng đó.

Gọi \(x\) là độ dài đường chéo của sân bóng. Tính \(x\) và tìm độ chính xác, sai số tương đối của \(x\)

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Gọi \(x\) là độ dài đường chéo của sân bóng. Áp dụng định lý Pytago, ta có:

\(x = \sqrt {{{105}^2} + {{68}^2}}  = \sqrt {15.649}  = 125,09596...\)

Lấy một giá trị gần đúng của \(x\) là 125,1, ta có: \(125,09 < x < 125,1\)

\( \Rightarrow \left| {x - 125,1} \right| < \left| {125,09 - 125,1} \right| = 0,01\)

Vậy độ dài sân bóng có thể lấy bằng 125,1 với độ chính xác \(d = 0,01\)

Sai số tương đối của 125,1 là \({\delta _{125,1}} = \frac{{{\Delta _{125,1}}}}{{\left| {125,1} \right|}} < \frac{{0,01}}{{125,1}} \approx 0,08\% \)

Advertisements (Quảng cáo)