Câu hỏi/bài tập:
Ở độ cao bằng \(\frac{7}{9}\)bán kính của Trái Đất có một vệ tinh nhân tạo chuyển động tròn đều xung quanh Trái Đất. Biết gia tốc rơi tự do ở mặt đất là 10 m/s2 và bán kính của Trái Đất là 6 400 km. Tính tốc độ và chu kì chuyển động của vệ tinh.
Lực hấp dẫn đóng vai trò lực hướng tâm: Fhd = Fht ↔ mgh = \(\frac{{m{v^2}}}{{(R + h)}}\) => v.
Áp dụng công thức tính chu kì: T = \(\frac{{2\pi }}{\omega }\)= \(\frac{{2\pi r}}{v}\).
Advertisements (Quảng cáo)
Theo đề ta có gia tốc rơi tự do ở độ cao h: gh = \(\frac{{{R^2}}}{{{{(R + h)}^2}}}g\).
Lực hấp dẫn (trọng lực) đóng vai trò lực hướng tâm: Fhd = Fht ↔ mgh = \(\frac{{m{v^2}}}{{(R + h)}}\).
=> \(\frac{{{R^2}}}{{{{(R + h)}^2}}}g\)= \(\frac{{{v^2}}}{{R + h}}\) => v = \(\sqrt {\frac{{9gR}}{{16}}} \)= \(\sqrt {\frac{{{{9.10.6400.10}^3}}}{{16}}} \)≈ 6000 m/s.
Chu kì của chuyển động tròn: T = \(\frac{{2\pi }}{\omega }\)= \(\frac{{2\pi r}}{v}\)= \(\frac{{2\pi (R + h)}}{v}\)= 11914,78 s = 3,3 giờ.