Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài 5 trang 103 Toán 10 tập 2 – Cánh diều: Trong...

Bài 5 trang 103 Toán 10 tập 2 – Cánh diều: Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có (Mleft( {2;1} right),Nleft( { -...

Giải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều - Bài tập cuối chương VII

Question - Câu hỏi/Đề bài

Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có \(M\left( {2;1} \right),N\left( { - 1;3} \right),P\left( {4;2} \right)\)

a) Tìm tọa độ của các vectơ \(\overrightarrow {OM} ,\overrightarrow {MN} ,\overrightarrow {MP} \)

b) Tính tích vô hướng \(\overrightarrow {MN} .\overrightarrow {MP} \)

c) Tính độ dài các đoạn thẳng \(MN,MP\)

d) Tính \(\cos \widehat {MNP}\)

e) Tìm tọa độ trung điểm I của NP và trọn tâm G của tam giác MNP

a) \(\overrightarrow {AB}  = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right)\)

b) Với hai vectơ \(\overrightarrow u  = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v  = \left( {{x_2},{y_2}} \right)\)đều khác vectơ không, ta có:\(\overrightarrow u .\overrightarrow v  = {x_1}.{x_2} + {y_1}.{y_2}\)

c) Nếu \(\overrightarrow a  = \left( {x;y} \right) \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2}} \)

Advertisements (Quảng cáo)

d)  Ta có: \(\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right| = \left| {\frac{{\overrightarrow {{u_1}} .\overrightarrow {{u_2}} }}{{\left| {\overrightarrow {{u_1}} } \right|\left| {\overrightarrow {{u_2}} } \right|}}} \right| = \frac{{{x_1}.{x_2} + {y_1}.{y_2}}}{{\sqrt {x_1^2 + y_1^2} .\sqrt {x_2^2 + y_2^2} }}\)

e)  Trung điểm M của đoạn thẳng AB có tọa độ là: \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\) 

 Tìm trọng tâm của hai tam giác bằng công thức tính trọng tâm: G là trọng tâm tam giác ABC thì tọa độ G là: \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

Answer - Lời giải/Đáp án

a) Ta có:  \(\overrightarrow {OM}  = \left( {2;1} \right),\overrightarrow {MN}  = \left( { - 3;2} \right),\overrightarrow {MP}  = \left( {2;1} \right)\)

b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP}  =  - 3.2 + 2.1 =  - 4\)

c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}}  = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}}  = \sqrt 5 \)

d) Ta có:  \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{4}{{\sqrt {13} .\sqrt 5 }} = \frac{4}{{\sqrt {65} }}\)

e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)

Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)

Advertisements (Quảng cáo)