Cho hình chóp \(S.ABC\) có \(\widehat {ASB} = \widehat {ASC} = {90^o}\). Gọi \(H\) là trực tâm của tam giác \(ABC\). Chứng minh rằng \(\left( {SAH} \right) \bot \left( {ABC} \right)\).
Để chứng minh 2 mặt phẳng vuông góc, ta cần chứng minh 1 đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia.
Advertisements (Quảng cáo)
Do \(H\) là trực tâm của tam giác \(ABC\) nên ta có \(AH \bot BC\).
Do \(\widehat {ASB} = \widehat {ASC} = {90^o}\) nên ta suy ra \(SA \bot SB\) và \(SA \bot SC\). Suy ra \(SA \bot \left( {BSC} \right)\), từ đó \(SA \bot BC\).
Như vậy, vì \(AH \bot BC\), \(SA \bot BC\) nên \(\left( {SAH} \right) \bot BC\).
Mà \(BC \subset \left( {ABC} \right)\), nên \(\left( {SAH} \right) \bot \left( {ABC} \right)\). Bài toán được chứng minh.