Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Bài 4 trang 99 Toán 11 tập 2 – Cánh Diều: Cho...

Bài 4 trang 99 Toán 11 tập 2 - Cánh Diều: Cho một đường thẳng không vuông góc với mặt phẳng cho trướChứng minh rằng tồn tại duy nhất một...

Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.. Lời giải bài tập, câu hỏi bài 4 trang 99 SGK Toán 11 tập 2 - Cánh Diều Bài 4. Hai mặt phẳng vuông góc. Cho một đường thẳng không vuông góc với mặt phẳng cho trước...

Question - Câu hỏi/Đề bài

Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Answer - Lời giải/Đáp án

Cho đường thẳng \(a\) không vuông góc với mặt phẳng \(\left( Q \right)\). Ta cần chứng minh tồn tại duy nhật mặt phẳng \(\left( P \right)\) chứa đường thẳng \(a\) và vuông góc với mặt phẳng \(\left( Q \right)\).

Advertisements (Quảng cáo)

• Lấy điểm \(A \in a\). Qua điểm \(A\) kẻ đường thẳng \(b\) vuông góc với mặt phẳng \(\left( Q \right)\).

\(\left. \begin{array}{l}b \bot \left( Q \right)\\b \in mp\left( {a,b} \right)\end{array} \right\} \Rightarrow mp\left( {a,b} \right) \bot \left( Q \right)\)

Vậy tồn tại mặt phẳng chứa đường thẳng \(a\) và vuông góc với mặt phẳng \(\left( Q \right)\).

• Giả sử có thêm mặt phẳng \(\left( P \right)\) chứa đường thẳng \(a\) và vuông góc với mặt phẳng \(\left( Q \right)\).

\( \Rightarrow a = \left( P \right) \cap mp\left( {a,b} \right)\)

Theo Bài tập 3b trang 99 ta có \(a \bot \left( Q \right)\), trái với giả thiết \(a\) không vuông góc với mặt phẳng \(\left( Q \right)\).

Vậy \(\left( P \right) \equiv mp\left( {a,b} \right)\).

Advertisements (Quảng cáo)