Phương trình \(\sin x = \cos x\) có số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) là
A. 2.
B. 4.
C. 5.
D. 6.
Advertisements (Quảng cáo)
Áp dụng công thức giữa các giá trị lượng giác của các góc liên quan để đưa phương trình về phương trình lượng giác cơ bản. Giải phương trình tìm x thuộc đoạn \(\left[ { - \pi ;\pi } \right]\).
\(\begin{array}{l}\sin x = \cos x \Leftrightarrow \cos \left( {\frac{\pi }{2} - x} \right) = \cos x\\ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{2} - x = x + k2\pi \\\frac{\pi }{2} - x = - x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l} - 2x = - \frac{\pi }{2} + k2\pi \\\frac{\pi }{2} = k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} - k\pi \\k = \frac{1}{4}\left( {\rm{L}} \right)\end{array} \right.\left( {k \in \mathbb{Z}} \right)\\ - \pi \le x \le \pi \Leftrightarrow - \pi \le \frac{\pi }{4} - k\pi \le \pi \Leftrightarrow - \frac{{5\pi }}{4} \le - k\pi \le \frac{{3\pi }}{4} \Leftrightarrow \frac{5}{4} \ge k \ge - \frac{3}{4}\\ \Rightarrow k \in \left\{ {0;1} \right\} \Rightarrow x \in \left\{ {\frac{\pi }{4}; - \frac{{3\pi }}{4}} \right\}\end{array}\)
Chọn đáp án A.