Một cấp số nhân hữu hạn có 5 số hạng, số hạng đầu là 2 và số hạng cuối là 162. Tổng các số hạng của cấp số nhân đó là
A. 80
B. 162
C. 242 hoặc 122
D. 268
Advertisements (Quảng cáo)
Dựa vào đầu bài, xác định \({u_1},{u_5}\). Từ đó áp dụng công thức \({u_{n + 1}} = {u_1}.{q^n}\) để tìm được công bội. Và áp dụng công thức \({S_n} = \frac{{{u_1}.\left( {1 - {q^n}} \right)}}{{1 - q}}\) để tính tổng.
Theo bài ra, ta có \({u_1} = 2,{u_5} = 162\)
\({u_5} = {u_1}.{q^4} \Leftrightarrow 162 = 2.{q^4} \Leftrightarrow q = \pm 3\)
Với \(q = 3\) thì \({S_5} = \frac{{{u_1}.\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{2.\left( {1 - {3^5}} \right)}}{{1 - 3}} = 242\)
Với \(q = - 3\) thì \({S_5} = \frac{{{u_1}.\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{2.\left( {1 - {{\left( { - 3} \right)}^5}} \right)}}{{1 + 3}} = 122\)
Chọn đáp án C.