Thay \(n = 10. Trả lời - Bài 2.27 trang 57 SGK Toán 11 tập 1 - Cùng khám phá - Bài tập cuối chương 2. Một cấp số nhân hữu hạn có 10 số hạng và công bội \(q = \frac{1}{2}\). Tổng các số hạng của cấp số nhân là 511,5...
Một cấp số nhân hữu hạn có 10 số hạng và công bội \(q = \frac{1}{2}\). Tổng các số hạng của cấp số nhân là 511,5. Số hạng đầu của cấp số nhân là
A. 512
B. 256
C. 128
D. 64
Advertisements (Quảng cáo)
Thay \(n = 10,q = \frac{1}{2}\) vào công thức \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\) để tìm \({u_1}\)
\(\begin{array}{l}{S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\\ \Leftrightarrow 511,5 = \frac{{{u_1}\left[ {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right]}}{{1 - \frac{1}{2}}}\\ \Leftrightarrow {u_1} = 256\end{array}\)
Chọn đáp án B.