Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 4 trang 120 SGK Hình học 11 Nâng cao: Tam giác...

Câu 4 trang 120 SGK Hình học 11 Nâng cao: Tam giác ABC vuông có cạnh huyền BC...

Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC). Chứng minh rằng . Câu 4 trang 120 SGK Hình học 11 Nâng cao - Bài tập ôn tập chương III

Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC). Chứng minh rằng \({\sin ^2}\alpha  = {\sin ^2}\beta  + {\sin ^2}\gamma \)

Kẻ AH ⊥ mp(P) và AI ⊥ BC

Advertisements (Quảng cáo)

Thì \(\beta  = \widehat {ABH},\gamma  = \widehat {ACH},\alpha  = \widehat {AIH}.\)

Vì ΔABC vuông ở A nên :

\(\eqalign{  & {1 \over {A{I^2}}} = {1 \over {A{B^2}}} + {1 \over {A{C^2}}}  \cr  &  \Rightarrow {{A{H^2}} \over {A{I^2}}} = {{A{H^2}} \over {A{B^2}}} + {{A{H^2}} \over {A{C^2}}}  \cr  & hay\,\,{\sin ^2}\alpha  = {\sin ^2}\beta  + {\sin ^2}\gamma  \cr} \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)