Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 4.56 trang 143 Sách Toán Đại số lớp 11 SBT Nâng...

Câu 4.56 trang 143 Sách Toán Đại số lớp 11 SBT Nâng cao: Tìm các giới hạn sau...

Tìm các giới hạn sau. Câu 4.56 trang 143 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 6: Một vài quy tắc tìm giới hạn vô cực

Tìm các giới hạn sau

a) \(\mathop {\lim }\limits_{x \to 3} \left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}}\)                     b) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}}\)

a) Với mọi \(x \ne 3,\)

\(\left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}} = {{3 - x} \over {3x}}.{1 \over {{{\left( {x - 3} \right)}^3}}} = \left( { - {1 \over {3x}}} \right).{1 \over {{{\left( {x - 3} \right)}^2}}}.\)

Vì  \(\mathop {\lim }\limits_{x \to 3} \left( { - {1 \over {3x}}} \right) =  - {1 \over 9} < 0\) và \(\mathop {\lim }\limits_{x \to 3} {1 \over {{{\left( {x - 3} \right)}^2}}} =  + \infty \) nên

                                                \(\mathop {\lim }\limits_{x \to 3} \left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}} =  - \infty ;\)

b) \({{4{x^4} - 3} \over {2{x^2} + 3x - 2}} = {{4{x^4} - 3} \over {2x - 1}}.{1 \over {x + 2}}\)

Advertisements (Quảng cáo)

Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2x - 1}} = {{ - 61} \over 5} < 0\) và \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {1 \over {x + 2}} =  + \infty \) nên

                    \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}} =  - \infty .\)

Cách giải khác

Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \left( {4{x^4} - 3} \right) = 61 > 0,\)

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \left( {2{x^2} + 3x - 2} \right) = 0\) và \(2{x^2} + 3x - 2 < 0\)

Với \( - 2 < x < {1 \over 2}\)  nên

                  \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}} =  - \infty .\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)