Trang chủ Lớp 12 SBT Toán 12 - Cánh diều Bài 6 trang 91 SBT Toán 12 – Cánh diều: Khi điều...

Bài 6 trang 91 SBT Toán 12 - Cánh diều: Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị...

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\). Gợi ý giải - Bài 6 trang 91 sách bài tập toán 12 - Cánh diều - Bài 1. Khoảng biến thiên - khoảng tứ phân vị của mẫu số liệu ghép nhóm. Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9. a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: (R = 90) (tuổi)...

Question - Câu hỏi/Đề bài

Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9.

a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 90\) (tuổi).

b) Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{200}}{4} = 50\).

c) \({Q_3} = 52\frac{{17}}{{24}}\).

d) Khoảng tứ phân vị của mẫu số liệu lớn hơn 20.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

+ Nhóm thứ \(p\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4}\) (tức là \(c{f_{p - 1}}

+ Nhóm thứ \(q\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4}\) (tức là \(c{f_{q - 1}}

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 90 - 10 = 80\). Vậy a) sai.

Ta có bảng sau:

Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{200}}{4} = 50\). Vậy b) đúng.

Nhóm 3 có đầu mút trái \(s = 30\), độ dài \(h = 10\), tần số của nhóm \({n_3} = 40\) và nhóm 2 có tần số tích luỹ \(c{f_2} = 49\).

Ta có: \({Q_1} = s + \left( {\frac{{50 - c{f_2}}}{{{n_3}}}} \right).h = 30 + \left( {\frac{{50 - 49}}{{40}}} \right).10 = 30,25\) (tuổi).

Nhóm 5 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.200}}{4} = 150\).

Nhóm 5 có đầu mút trái \(t = 50\), độ dài \(l = 10\), tần số của nhóm \({n_5} = 50\) và nhóm 4 có tần số tích luỹ \(c{f_4} = 137\).

Ta có: \({Q_3} = t + \left( {\frac{{150 - c{f_4}}}{{{n_5}}}} \right).l = 50 + \left( {\frac{{150 - 137}}{{50}}} \right).10 = 52,6\) (tuổi). Vậy c) sai.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 52,6 - 30,25 = 22,35 > 20\). Vậy d) đúng.

a) S.

b) Đ.

c) S.

d) Đ.

Advertisements (Quảng cáo)