Thời gian bù giờ của 64 trận đấu bóng đá trong một giải đấu được ghi lại ở bảng sau:
Tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).
‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:
\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)
‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(S = \sqrt {{S^2}} \).
Advertisements (Quảng cáo)
Ta có bảng sau:
Cỡ mẫu \(n = 64\)
Số trung bình của mẫu số liệu ghép nhóm là:
\(\overline x = \frac{{2,5.5 + 3,5.19 + 4,5.24 + 5,5.10 + 6,5.6}}{{64}} = \frac{{281}}{{64}}\)
Phương sai của mẫu số liệu ghép nhóm đó là:
\({S^2} = \frac{1}{{64}}\left( {{{5.2,5}^2} + {{19.3,5}^2} + {{24.4,5}^2} + {{10.5,5}^2} + {{6.6,5}^2}} \right) - {\left( {\frac{{281}}{{64}}} \right)^2} = \frac{{4623}}{{4096}} \approx 1,13\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(S = \sqrt {\frac{{4623}}{{4096}}} \approx 1,06\).