Trang chủ Lớp 7 SBT Toán 7 - Chân trời sáng tạo Bài 6 trang 27 SBT Toán lớp 7 Chân trời sáng tạo:...

Bài 6 trang 27 SBT Toán lớp 7 Chân trời sáng tạo: Cho đa thức (Qleft( t right) = 3{t^2} + 15t + 12). Hãy cho biết các số nào trong...

Giải Bài 6 trang 27 sách bài tập toán 7 - Chân trời sáng tạo - Bài 2. Đa thức một biến

Question - Câu hỏi/Đề bài

Cho đa thức Q(t)=3t2+15t+12Q(t)=3t2+15t+12. Hãy cho biết các số nào trong tập hợp {1;4;1}{1;4;1} là nghiệm của Q(t)Q(t).

Thay t=t0t=t0 vào Q(t)Q(t) nếu Q(t0)=0Q(t0)=0 thì t=t0t=t0 là nghiệm của Q(t)Q(t).

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

+ Thay t=1t=1 vào Q(t)=3t2+15t+12Q(t)=3t2+15t+12, ta có Q(1)=3.12+15.1+12=300Q(1)=3.12+15.1+12=300

Vậy t=1t=1 không là nghiệm của Q(t)=3t2+15t+12Q(t)=3t2+15t+12.

+ Thay t=4t=4 vào Q(t)=3t2+15t+12Q(t)=3t2+15t+12, ta có Q(4)=3.(4)2+15.(4)+12=0Q(4)=3.(4)2+15.(4)+12=0

Vậy t=4t=4 là nghiệm của Q(t)=3t2+15t+12Q(t)=3t2+15t+12.

+ Thay t=1t=1 vào Q(t)=3t2+15t+12Q(t)=3t2+15t+12, ta có Q(1)=3.(1)2+15.(1)+12=0Q(1)=3.(1)2+15.(1)+12=0

Vậy t=1t=1 là nghiệm của Q(t)=3t2+15t+12Q(t)=3t2+15t+12.

Vậy {4;1}{4;1} là nghiệm của Q(t)=3t2+15t+12Q(t)=3t2+15t+12.

Advertisements (Quảng cáo)