Thực hiện phép tính:
\(a) - \dfrac{1}{3}{a^2}b\left( { - 6{\rm{a}}{b^2} - 3{\rm{a}} + 9{b^3}} \right)\) \(b)\left( {{a^2} + {b^2}} \right)\left( {{a^4} - {a^2}{b^2} + {b^4}} \right)\)
\(c)\left( { - 5{{\rm{x}}^3}{y^3}z} \right):\left( {\dfrac{{15}}{2}x{y^2}z} \right)\)\(d)\left( {8{{\rm{x}}^4}{y^2} - 10{{\rm{x}}^2}{y^4} + 12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)\)
Áp dụng các quy tắc nhân đơn thức với đa thức, nhân đa thức với đa thức, chia đơn thức cho đơn thức, chia đa thức cho đơn thức đối với đa thức nhiều biên để thực hiện phép tính.
Advertisements (Quảng cáo)
\(\begin{array}{l}a) - \dfrac{1}{3}{a^2}b\left( { - 6{\rm{a}}{b^2} - 3{\rm{a}} + 9{b^3}} \right)\\ = \left( { - \dfrac{1}{3}{a^2}b} \right).\left( { - 6{\rm{a}}{b^2}} \right) + \left( { - \dfrac{1}{3}{a^2}b} \right).\left( { - 3{\rm{a}}} \right) + \left( { - \dfrac{1}{3}{a^2}b} \right).\left( {9{b^3}} \right)\\ = 2{{\rm{a}}^3}{b^4} + {a^3}b - 3{\rm{a}}{b^4}\end{array}\)
\(b)\left( {{a^2} + {b^2}} \right)\left( {{a^4} - {a^2}{b^2} + {b^4}} \right) = {\left( {{a^2}} \right)^3} + {\left( {{b^2}} \right)^3} = {a^6} + {b^6}\)
\(\begin{array}{l}c)\left( { - 5{{\rm{x}}^3}{y^3}z} \right):\left( {\dfrac{{15}}{2}x{y^2}z} \right)\\ = \left( { - 5:\dfrac{{15}}{2}} \right).\left( {{x^3}:x} \right).\left( {{y^3}:{y^2}} \right).\left( {z:z} \right) = \dfrac{{ - 2}}{3}{x^2}\end{array}\)
\(\begin{array}{l}d)\left( {8{{\rm{x}}^4}{y^2} - 10{{\rm{x}}^2}{y^4} + 12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)\\ = \left[ {\left( {8{{\rm{x}}^4}{y^2}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right] + \left[ {\left( { - 10{x^2}{y^4}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right] + \left[ {\left( {12{{\rm{x}}^3}{y^5}} \right):\left( { - 2{{\rm{x}}^2}{y^2}} \right)} \right]\\ = - 4{{\rm{x}}^2} + 5{y^2} - 6{\rm{x}}{y^3}\end{array}\)