Trang chủ Lớp 8 SGK Toán 8 - Kết nối tri thức Bài 1.21 trang 18 Toán 8 tập 1 – Kết nối tri...

Bài 1.21 trang 18 Toán 8 tập 1 - Kết nối tri thức: Cho hai đa thức...

Gợi ý giải bài 1.21 trang 18 SGK Toán 8 tập 1 - Kết nối tri thức Luyện tập chung trang 17. Cho hai đa thức:

Question - Câu hỏi/Đề bài

Cho hai đa thức:

\(A = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1;\\B = 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2.\)

a) Tìm đa thức C sao cho A-C=B;

b) Tìm đa thức D sao cho A+D=B;

c) Tìm đa thức E sao cho E-A=B;

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng bài toán ngược tìm C,D,E. Sau đó sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a)

\(\begin{array}{l}A - C = B\\ \Rightarrow C = A - B \\= 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - \left( {7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2} \right)\\ = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - 7{x^2}yz + 5x{y^2}z - 3xy{z^2} + 2\\ = \left( {7xy{z^2} - 3xy{z^2}} \right) + \left( { - 5x{y^2}z + 5x{y^2}z} \right) + \left( {3{x^2}yz - 7{x^2}yz} \right) - xyz + \left( {1 + 2} \right)\\ = 4xy{z^2} - 4{x^2}yz - xyz + 3\end{array}\)

b)

\(\begin{array}{l}A + D = B\\ \Rightarrow D = B - A \\= - \left( {A - B} \right) = - C \\= - 4xy{z^2} + 4{x^2}yz + xyz - 3.\end{array}\)

c)

\(\begin{array}{l}E - A = B\\ \Rightarrow E = A + B = A \\= 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 + 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2\\ = \left( {7xy{z^2} + 3xy{z^2}} \right) + \left( { - 5x{y^2}z - 5x{y^2}z} \right) + \left( {3{x^2}yz + 7{x^2}yz} \right) - xyz + \left( {1 - 2} \right)\\ = 10xy{z^2} - 10x{y^2}z + 10{x^2}yz - xyz - 1\end{array}\)

Advertisements (Quảng cáo)