Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song với BC, CA, AB lần lượt cắt AB, BC, CA tại các điểm P, Q, R.
a) Chứng minh tứ giác APMR là hình thang cân
b) Chứng minh rằng chu vi tam giác PQR bằng tổng độ dài MA + MB + MC.
c) Hỏi với vị trí nào của M thì tam giác PQR là tam giác đều?
a) Chứng minh: Tứ giác APMR là hình thang có \(\widehat {ABC} = \widehat {APM}\) nên tứ giác APMR là hình thang cân.
b) Chứng minh: AM = PR ; BM = PQ; MC = PQ nên PR + BM + QR = MA + MB + MC.
c) Vì điểm M cách đều ba đỉnh A, B, C của tam giác ABC do đó M là giao điểm của ba đường trung trực của tam giác ABC.
a) Vì tam giác ABC đều nên \(\widehat {BAC} = \widehat {ABC} = \widehat {ACB} = {60^o}\)
Vì PM // BC nên \(\widehat {ABC} = \widehat {APM} = {60^o}\)
Tứ giác APMR là hình thang (vì MR // AP) có \(\widehat {ABC} = \widehat {APM}\)
Advertisements (Quảng cáo)
Do đó tứ giác APMR là hình thang cân.
b) Vì tứ giác APMR là hình thang cân nên AM = PR (1)
Vì MQ // AC nên \(\widehat {BQM} = \widehat {ACB} = {60^o}\)
Tứ giác BPMQ là hình thang (vì PM // BQ) có \(\widehat {BQM} = \widehat {ACB}\) nên BPMQ là hình thang cân.
Suy ra BM = PQ (2)
Tứ giác QMRC là hình thang (vì QM // RC) có \(\widehat {MRC} = \widehat {RCQ}\) (cùng bằng góc BAC) nên QMRC là hình thang cân. ta có MC = QR (3)
Từ (1); (2) và (3) suy ra PR + BM + QR = MA + MB + MC.
Do đó chu vi tam giác PQR bằng tổng độ dài MA + MB + MC (đpcm).
c) Vì chu vi tam giác PQR bằng tổng độ dài MA + MB + MC
Để tam giác PQR là tam giác đều thì PQ = QR = PR suy ra MA = MB = MC
Khi đó điểm M cách đều ba đỉnh A, B, C của tam giác ABC.
Do đó M là giao điểm của ba đường trung trực (đồng thời M cũng là giao điểm của ba đường trung tuyến, ba đường cao, đường phân giác).
Vậy khi M là giao điểm của ba đường trung trực thì tam giác PQR là tam giác đều.