Trang chủ Lớp 8 SGK Toán 8 - Kết nối tri thức Bài 3.8 trang 55 Toán 8 tập 1 – Kết nối tri...

Bài 3.8 trang 55 Toán 8 tập 1 - Kết nối tri thức: Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD...

Gọi O là giao điểm của AB và IJChứng minh: Hướng dẫn giải bài 3.8 trang 55 SGK Toán 8 tập 1 - Kết nối tri thức Bài 11. Hình thang cân. Hình thang cân ABCD (AB // CD...

Question - Câu hỏi/Đề bài

Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD cắt nhau tại J. Chứng minh rằng đường thẳng IJ là đường trung trực của đoạn thẳng AB.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Gọi O là giao điểm của AB và IJ

Chứng minh: Tam giác IAB cân tại I (vì IA = IB) có IO là tia phân giác \(\widehat {AIB}\)

Suy ra IO là đường trung trực của đoạn thẳng AB.

Suy ra đường thẳng IJ là đường trung trực của đoạn thẳng AB

Answer - Lời giải/Đáp án

Gọi O là giao điểm của AB và IJ.

Vì ABCD là hình thang cân nên \(\widehat {BA{\rm{D}}} = \widehat {ABC};\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}};A{\rm{D}} = BC, AC = BD\)

Tam giác ICD cân tại I (vì \(\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}}\)) nên IC = ID.

Xét tam giác ABD và BAC có:

AB chung

AD = BC (cmt)

Advertisements (Quảng cáo)

AC = BD (cmt)

=> ∆ABD = ∆BAC (c.c.c) => \(\widehat {A{\rm{D}}B} = \widehat {BC{\rm{A}}}\)

Vì \(\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}};\widehat {A{\rm{D}}B} = \widehat {BC{\rm{A}}}\) nên \(\widehat {J{\rm{D}}C} = \widehat {JC{\rm{D}}}\)

Tam giác JCD cân tại J (vì \(\widehat {J{\rm{D}}C} = \widehat {JC{\rm{D}}}\) ) nên JC = JD.

Xét ∆IJD và ∆IJC có:

IC = ID (chứng minh trên);

\(\widehat {A{\rm{D}}B} = \widehat {BC{\rm{A}}}\);

JC = JD (chứng minh trên).

Do đó ∆IJD = ∆IJC (c.g.c).

Suy ra \(\widehat {D{\rm{IJ}}} = \widehat {C{\rm{IJ}}}\) (hai góc tương ứng).

Ta có ID = IC, AD = BC.

Mà ID = AI + AD; IC = IB + BC nên IA = IB.

Tam giác IAB cân tại I (vì IA = IB) có IO là tia phân giác \(\widehat {AIB}\)

Suy ra IO là đường trung trực của đoạn thẳng AB.

Vậy đường thẳng IJ là đường trung trực của đoạn thẳng AB.

Advertisements (Quảng cáo)