Câu hỏi/bài tập:
Tìm tích của đơn thức với đa thức:
a) \(\left( { - 0,5} \right)x{y^{2\;}}\left( {2xy-{x^2}\; + 4y} \right)\).
b) \(\left( {{x^3}y - \frac{1}{2}{x^2} + \frac{1}{3}xy} \right)6x{y^3}\).
Advertisements (Quảng cáo)
Sử dụng quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.
a)
\(\begin{array}{l}\left( { - 0,5} \right)x{y^{2\;}}\left( {2xy-{x^2}\; + 4y} \right)\\ = \left( { - 0,5} \right)x{y^{2\;}}.2xy + \left( { - 0,5} \right)x{y^{2\;}}.\left( {-{x^2}\;} \right) + \left( { - 0,5} \right)x{y^{2\;}}.4y\\ = \left( { - 0,5.2} \right).\left( {x.x} \right).\left( {{y^2}.y} \right) + \left[ {\left( { - 0,5} \right).\left( { - 1} \right)} \right].\left( {x.{x^2}} \right).{y^2} + \left( { - 0,5.4} \right).x.\left( {{y^2}.y} \right)\\ = - {x^2}{y^3}\; + 0,5{x^3}{y^{2\;}}-\;2x{y^3}\end{array}\)
b)
\(\begin{array}{l}\left( {{x^3}y - \frac{1}{2}{x^2} + \frac{1}{3}xy} \right)6x{y^3}\\ = {x^3}y.6x{y^3} - \frac{1}{2}{x^2}.6x{y^3} + \frac{1}{3}xy.6x{y^3}\\ = 6.\left( {{x^3}.x} \right).\left( {y.{y^3}} \right) + \left( { - \frac{1}{2}.6} \right).\left( {{x^2}.x} \right).{y^3} + \left( {\frac{1}{3}.6} \right)\left( {x.x} \right)\left( {y.{y^3}} \right)\\ = 6{x^4}{y^4} - 3{x^3}{y^3} + 2{x^2}{y^4}\end{array}\)