Sử dụng quy tắc chia đa thức cho đơn thức: Muốn chia đa thức A cho đơn thức B (trường hợp chia hết). Vận dụng kiến thức giải Giải bài 3 trang 20 vở thực hành Toán 8 - Bài 5. Phép chia đa thức cho đơn thức . Thực hiện phép chia \(\left( {7{y^5}{z^2}\;-14{y^4}{z^3}\; + 2,1{y^3}{z^4}} \right):\left( { - 7{y^3}{z^2}} \right)\) .
Câu hỏi/bài tập:
Thực hiện phép chia \(\left( {7{y^5}{z^2}\;-14{y^4}{z^3}\; + 2,1{y^3}{z^4}} \right):\left( { - 7{y^3}{z^2}} \right)\) .
Advertisements (Quảng cáo)
Sử dụng quy tắc chia đa thức cho đơn thức: Muốn chia đa thức A cho đơn thức B (trường hợp chia hết), ta chia từng hạng tử của A cho B rồi cộng các kết quả với nhau.
\(\begin{array}{*{20}{l}}{\left( {7{y^5}{z^2}\;-14{y^4}{z^3}\; + 2,1{y^3}{z^4}} \right):\left( { - 7{y^3}{z^2}} \right).}\\\begin{array}{l} = 7{y^5}{z^2}:\left( { - 7{y^3}{z^2}} \right)-14{y^4}{z^3}:\left( { - 7{y^3}{z^2}} \right) + 2,1{y^3}{z^4}:\left( { - 7{y^3}{z^2}} \right)\\ = - {y^2}\; + 2yz-0,3{z^2}.\end{array}\end{array}\)