Sử dụng quy tắc chia đa thức cho đơn thức. Giải và trình bày phương pháp giải Câu 4 trang 23 - Bài tập cuối chương I - Vở thực hành Toán 8.
Câu hỏi/bài tập:
Khi chia đa thức \(8{x^3}{y^2}\;-6{x^2}{y^3}\) cho đơn thức \( - 2xy\), ta được kết quả là
A. \( - 4{x^2}y + 3x{y^2}\).
B. \( - 4x{y^2}\; + 3{x^2}y\).
C. \( - 10{x^2}y + 4x{y^2}\).
D. \( - 10{x^2}y + 4x{y^2}\).
Advertisements (Quảng cáo)
Sử dụng quy tắc chia đa thức cho đơn thức.
Ta có:
\(\begin{array}{*{20}{l}}\begin{array}{l}\;\left( {8{x^3}{y^2}\;-6{x^2}{y^3}} \right):\left( { - 2xy} \right)\\ = 8{x^3}{y^2}\;:\left( { - 2xy} \right)-6{x^2}{y^3}\;:\left( { - 2xy} \right)\end{array}\\{ = - 4{x^2}y + 3x{y^2}.}\end{array}\)
=> Chọn đáp án A.