Trang chủ Lớp 9 SBT Toán 9 - Chân trời sáng tạo Bài 24 trang 19 SBT toán 9 – Chân trời sáng tạo...

Bài 24 trang 19 SBT toán 9 - Chân trời sáng tạo tập 2: Một phòng họp có 420 cái ghế được chia thành các dãy có số ghế bằng nhau...

Gọi số dãy ghế của phòng họp lúc đầu là x (\(x \in \mathbb{N}*)\) Dựa vào dữ kiện đề bài để lập phương trình Giải. Gợi ý giải Giải bài 24 trang 19 sách bài tập toán 9 - Chân trời sáng tạo tập 2 - Bài tập cuối chương 6 . Một phòng họp có 420 cái ghế được chia thành các dãy có số ghế bằng nhau.

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Một phòng họp có 420 cái ghế được chia thành các dãy có số ghế bằng nhau. Nếu thêm cho mỗi dãy 7 cái ghế và bớt đi 5 dãy thì số ghế trong phòng họp không thay đổi. Hỏi lúc đầu trong phòng họp có bao nhiêu dãy ghế?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Gọi số dãy ghế của phòng họp lúc đầu là x (\(x \in \mathbb{N}*)\)

Dựa vào dữ kiện đề bài để lập phương trình

Giải phương trình và kết luận.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Gọi số dãy ghế của phòng họp lúc đầu là x (\(x \in \mathbb{N}*)\)

Số ghế ở mỗi dãy lúc đầu là \(\frac{{420}}{x}\) (cái).

Số ghế ở mỗi dãy lúc sau là \(\frac{{420}}{{x - 5}}\) (cái).

Theo đề bài, ta có phương trình: \(\frac{{420}}{{x - 5}} - \frac{{420}}{x} = 7\).

Giải phương trình trên, ta được x1 = 20 (thoả mãn); x2 = - 15 (loại).

Vậy lúc đầu trong phòng họp có 20 dãy ghế.

Advertisements (Quảng cáo)