Hoạt động3
Trả lời câu hỏi Hoạt động 3 trang 63
Thể tích V của một khối lập phương được tính bởi công thức: \(V = {a^3}\) với a là độ dài cạnh của khối lập phương. Viết công thức tính độ dài cạnh của khối lập phương theo thể tích V của nó.
Chuyển về căn thức để tính a.
Công thức tính độ dài cạnh của khối lập phương là: \(a = \sqrt[3]{V}\).
Luyện tập4
Trả lời câu hỏi Luyện tập 4 trang 64
Mỗi biểu thức sau có phải là một căn thức bậc ba hay không?
a. \(\sqrt[3]{{2{x^2} - 7}}\);
b. \(\sqrt[3]{{\frac{1}{{5x - 4}}}}\);
c. \(\frac{1}{{7x + 1}}\).
Dựa vào định nghĩa căn thức bậc ba để xác định.
a. Biểu thức \(\sqrt[3]{{2{x^2} - 7}}\) là một căn thức bậc ba vì \(2{x^2} - 7\) là một biểu thức đại số.
b. Biểu thức \(\sqrt[3]{{\frac{1}{{5x - 4}}}}\) là một căn thức bậc ba vì \(\frac{1}{{5x - 4}}\) là một biểu thức đại số.
c. Biểu thức \(\frac{1}{{7x + 1}}\) không là một căn thức bậc ba.
Luyện tập5
Trả lời câu hỏi Luyện tập 5 trang 64
Tính giá trị của \(\sqrt[3]{{{x^3}}}\) tại \(x = 3;x = - 2;x = - 10\).
Thay giá trị vào biểu thức để tính giá trị của biểu thức.
Advertisements (Quảng cáo)
Thay \(x = 3\) vào biểu thức, ta được: \(\sqrt[3]{{{3^3}}} = \sqrt[3]{{27}} = 3\).
Thay \(x = - 2\) vào biểu thức, ta được: \(\sqrt[3]{{{{\left( { - 2} \right)}^3}}} = \sqrt[3]{{ - 8}} = - 2\).
Thay \(x = - 10\) vào biểu thức, ta được: \(\sqrt[3]{{{{\left( { - 10} \right)}^3}}} = \sqrt[3]{{ - 1000}} = - 10\).
Hoạt động4
Trả lời câu hỏi Hoạt động 4 trang 64
Cho căn thức bậc ba \(\sqrt[3]{{\frac{2}{{x - 1}}}}\). Biểu thức đó có xác định hay không tại mỗi giá trị sau?
a. \(x = 17\).
b. \(x = 1\).
Thay giá trị vào biểu thức để kiểm tra xem có xác định không.
a. Thay \(x = 17\) vào biểu thức, ta được: \(\sqrt[3]{{\frac{2}{{17 - 1}}}} = \sqrt[3]{{\frac{2}{{16}}}} = \sqrt[3]{{\frac{1}{8}}} = \frac{1}{2}\).
Vậy biểu thức đã cho xác định.
b. Thay \(x = 1\) vào biểu thức, ta được: \(\sqrt[3]{{\frac{2}{{1 - 1}}}} = \sqrt[3]{{\frac{2}{0}}}\).
Do \(\frac{2}{0}\) không xác định nên biểu thức đã cho không xác định.
Luyện tập6
Trả lời câu hỏi Luyện tập 6 trang 64
Tìm điều kiện xác dịnh cho mỗi căn thức bậc ba sau:
a. \(\sqrt[3]{{{x^2} + x}}\)
b. \(\sqrt[3]{{\frac{1}{{x - 9}}}}\)
Dựa vào định lý tìm điều kiện xác định của căn bậc ba để tìm điều kiện xác định của biểu thức.
a. \(\sqrt[3]{{{x^2} + x}}\) xác định với mọi số thực \(x\) vì \({x^2} + x\) xác định với mọi số thực \(x\).
b. \(\sqrt[3]{{\frac{1}{{x - 9}}}}\) xác định với \(x \ne 9\) vì \(\frac{1}{{x - 9}}\) xác định với \(x \ne 9\).