Trang chủ Lớp 9 SGK Toán 9 - Chân trời sáng tạo Bài 6 trang 63 Toán 9 tập 2 – Chân trời sáng...

Bài 6 trang 63 Toán 9 tập 2 - Chân trời sáng tạo: Một hộp chứa 5 tấm thẻ cùng loại được đánh số lần lượt là 1; 4; 9; 10; 16...

Dựa vào khái niệm không gian mẫu, kí hiệu là \(\Omega \), là tập hợp tất cả các kết quả có thể xảy ra của phép thử. Giải bài tập 6 trang 63 SGK Toán 9 tập 2 - Chân trời sáng tạo - Bài tập cuối chương 8. Một hộp chứa 5 tấm thẻ cùng loại được đánh số lần lượt là 1; 4; 9; 10; 16. Lấy ngẫu nhiên đồng thời 2 tấm thẻ từ hộp...

Question - Câu hỏi/Đề bài

Một hộp chứa 5 tấm thẻ cùng loại được đánh số lần lượt là 1; 4; 9; 10; 16. Lấy ngẫu nhiên đồng thời 2 tấm thẻ từ hộp.

a) Xác định không gian mẫu và số kết quả có thể xảy ra của phép thử.

b) Tính xác suất của mỗi biến cố sau:

A: “Tích các số ghi trên 2 tấm thẻ chia hết cho 5”;

B: “Tổng các số ghi trên 2 tấm thẻ lớn hơn 14”.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Dựa vào khái niệm không gian mẫu, kí hiệu là \(\Omega \), là tập hợp tất cả các kết quả có thể xảy ra của phép thử.

- Tính các kết quả thuận lợi của biến cố.

Advertisements (Quảng cáo)

- Sau đó tính xác suất các biến cố dựa vào: Xác suất của biến cố A, kí hiệu là P(A), được xác định bởi công thức: \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\), trong đó n(A) là số các kết quả thuận lợi cho A; \(n(\Omega )\) là số các kết quả có thể xảy ra.

Answer - Lời giải/Đáp án

a) Không gian mẫu của phép thử: \(\Omega \) = {(1; 4), (1; 9), (1; 10), (1; 16), (4; 9), (4; 10), (4; 16), (9; 10), (9; 16), (10; 16)}.

Suy ra \(n(\Omega )\) = 10.

b) Vì các thẻ giống nhau nên có cùng khả năng được chọn.

Có 4 kết quả thuận lợi cho biến cố A là: (1; 10), (4; 10), (9; 10), (10; 16).

Xác suất xảy ra biến cố A là: P(A) = \(\frac{4}{{10}} = \frac{2}{5}\).

Có 5 kết quả thuận lợi cho biến cố B là: (1; 16), (4; 16), (9; 10), (9; 16), (10; 16).

Xác suất xảy ra biến cố B là: P(B) = \(\frac{5}{{10}} = \frac{1}{2}\).

Advertisements (Quảng cáo)