Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Bài 1.10 trang 18 Toán 9 Cùng khám phá tập 1: Giải...

Bài 1.10 trang 18 Toán 9 Cùng khám phá tập 1: Giải các hệ phương trình sau bằng phương pháp cộng đại số...

Sử dụng các bước giải hệ của phương pháp cộng đại số để giải hệ. Giải và trình bày phương pháp giải bài tập 1.10 trang 18 SGK Toán 9 tập 1 - Cùng khám phá Bài 2. Phương trình và hệ hai phương trình bậc nhất hai ẩn. Giải các hệ phương trình sau bằng phương pháp cộng đại số: a) \(\left\{ \begin{array}{l}2x - 5y = 8\\2x - 7y = 0\end{array} \right. \)b) \(\left\{ \begin{array}{l}4x + 3y = 6\\2x + y = 4\end{array} \right. \)c) \(\left\{ \begin{array}{l}0, 3x + 0, 5y = 3\\1...

Question - Câu hỏi/Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l}2x - 5y = 8\\2x - 7y = 0\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + 3y = 6\\2x + y = 4\end{array} \right.\)

c) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5\end{array} \right.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng các bước giải hệ của phương pháp cộng đại số để giải hệ.

Answer - Lời giải/Đáp án

a) Do hệ số của \(x\) trong hai phương trình bằng nhau nên trừ từng vế hai phương trình của hệ, ta được:

\(\begin{array}{l}\left( {2x - 5y} \right) - \left( {2x - 7y} \right) = 8 - 0\\2x - 5y - 2x + 7y = 8\\2y = 8\\y = 4.\end{array}\)

Thay \(y = 4\) vào phương trình \(2x - 7y = 0\), ta có:

\(\begin{array}{l}2x - 7.4 = 0\\2x - 28 = 0\\2x = 28\\x = 14.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {14;4} \right)\)

Advertisements (Quảng cáo)

b) Nhân hai vế của phương trình thứ hai với 2, ta thu được hệ sau: \(\left\{ \begin{array}{l}4x + 3y = 6\\4x + 2y = 8\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {4x + 3y} \right) - \left( {4x + 2y} \right) = 6 - 8\\4x + 3y - 4x - 2y = - 2\\y = - 2.\end{array}\)

Thay \(y = - 2\) vào phương trình \(2x + y = 4\), ta có:

\(\begin{array}{l}2x - 2 = 4\\2x = 6\\x = 3.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {3; - 2} \right)\).

c) Nhân hai vế của phương trình thứ nhất với 4, ta thu được hệ sau: \(\left\{ \begin{array}{l}1,2x + 2y = 12\\1,5x - 2y = 1,5\end{array} \right.\)

Cộng tứng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {1,2x + 2y} \right) + \left( {1,5x - 2y} \right) = 12 + 1,5\\1,2x + 2y + 1,5x - 2y = 13,5\\2,7x = 13,5\\x = 5.\end{array}\)

Thay \(x = 5\) vào phương trình \(1,5x - 2y = 1,5\), ta có:

\(\begin{array}{l}1,5.5 - 2y = 1,5\\7,5 - 2y = 1,5\\2y = 6\\y = 3.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {5;3} \right)\).

Advertisements (Quảng cáo)