Điểm trung bình của một vận động viên bắn súng sau 100 lần bắn là 8,73 điểm. Kết quả cụ thể được ghi lại trong bảng sau, trong đó có 2 ô bị mờ không đọc được (đánh dấu ?):
Hãy xác định các số trong hai ô đó.
+ Lập hệ phương trình;
+ Giải hệ phương trình;
+ Kiểm tra nghiệm rồi trả lời cho bài toán ban đầu.
Advertisements (Quảng cáo)
Gọi \(x\) (lần) và \(y\) (lần) \(\left( {x,y \in {\mathbb{N}^*}} \right)\) lần lượt là số lần bắn vào ô 6 điểm và ô 8 điểm.
Do tổng số lần bắn là 100 lần nên \(x + 10 + y + 45 + 28 = 100\).
Do điểm trung bình sau 100 lần bắn là 8,73 nên \(6x + 7.10 + 8y + 9.45 + 10.28 = 8,73.100\).
Do đó ta có hệ phương trình
\(\left\{ \begin{array}{l}x + 10 + y + 45 + 28 = 100\\6x + 70 + 8y + 405 + 280 = 873\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + y = 17\\6x + 8y = 118\end{array} \right.\).
Giải hệ phương trình trên, ta được \(x = 9\) (lần) và \(y = 8\) (lần).
Ta thấy \(x = 9\) và \(y = 8\) thỏa mãn điều kiện \(x,y \in {\mathbb{N}^*}\).
Vậy số lần bắn vào ô 6 điểm và ô 8 điểm lần lượt là 9 lần và 8 lần.