Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Bài 5.39 trang 128 Toán 9 Cùng khám phá tập 1: Trong...

Bài 5.39 trang 128 Toán 9 Cùng khám phá tập 1: Trong Hình 5.76, hai puly có dạng hình tròn tâm A bán kính 12...

Kẻ BG vuông góc với AD tại G. + Chứng minh tứ giác BCDG là hình chữ nhật suy ra \(CD = BG\). Hướng dẫn trả lời bài tập 5.39 trang 128 SGK Toán 9 tập 1 - Cùng khám phá Ôn tập chương 5. Trong Hình 5.76, hai puly có dạng hình tròn tâm A bán kính 12, 5cm và tâm B bán kính 7cm được nối bằng dây curoa. Khoảng cách giữa tâm của hai puly là (AB = 30cm). Đoạn dây CD...

Question - Câu hỏi/Đề bài

Trong Hình 5.76, hai puly có dạng hình tròn tâm A bán kính 12,5cm và tâm B bán kính 7cm được nối bằng dây curoa. Khoảng cách giữa tâm của hai puly là \(AB = 30cm\). Đoạn dây CD, EF tiếp xúc với cả hai puly. Tính:

a) Độ dài CD và số đo các góc của tứ giác ABCD;

b) Độ dài dây curoa.

Làm tròn độ dài đến hàng phần mười centimét, số đo góc đến phút.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) + Kẻ BG vuông góc với AD tại G.

+ Chứng minh tứ giác BCDG là hình chữ nhật suy ra \(CD = BG\), \(BC = DG\)

+ Áp dụng định lí Pythagore vào tam giác ABG vuông tại G để tính BG, AG; tính cos GAB, từ đó tính góc GAB.

+ Tứ giác ABCD có: \(\widehat C + \widehat D + \widehat {DAB} + \widehat {ABC} = {360^o}\), từ đó tính được góc ABC.

b) + Tính số đo cung lớn FD, số đo cung nhỏ CE.

+ Tính độ dài cung lớn FD, độ dài cung nhỏ CE.

+ Độ dài dây curoa là: \({l_{DF}} + {l_{CE}} + CD + EF\).

Answer - Lời giải/Đáp án

Kẻ BG vuông góc với AD tại G. Suy ra: \(\widehat {BGD} = \widehat {BGA} = {90^o}\).

Vì CD là tiếp tuyến của hai đường tròn (B) và (A) nên \(BC \bot CD,CD \bot AD\) nên \(\widehat {BCD} = \widehat {CDG} = {90^o}\).

Tứ giác BGDC có: \(\widehat {BCD} = \widehat {CDG} = \widehat {BGD} = {90^o}\) nên tứ giác BGDC là hình chữ nhật.

Do đó, \(CD = BG\), \(BC = DG = 7cm\).

Tam giác BGA vuông tại G nên:

+ \(\cos GAB = \frac{{GA}}{{AB}} = \frac{{DA - GD}}{{AB}} = \frac{{5,5}}{{30}} = \frac{{11}}{{60}}\) nên \(\widehat {GAB} \approx {79^o}26’\)

+ \(B{G^2} + G{A^2} = A{B^2}\),

\(BG = \sqrt {A{B^2} - {{\left( {AD - DG} \right)}^2}} = \sqrt {{{30}^2} - {{\left( {12,5 - 7} \right)}^2}} = \frac{{7\sqrt {71} }}{2}\left( {cm} \right)\)

nên \(CD = \frac{{7\sqrt {71} }}{2}cm\)

Chứng minh tương tự ta có: \(EF = \frac{{7\sqrt {71} }}{2}cm\)

Tứ giác ABCD có: \(\widehat C + \widehat D + \widehat {DAB} + \widehat {ABC} = {360^o}\)

\(\widehat {ABC} = {360^o} - \left( {\widehat C + \widehat D + \widehat {DAB}} \right) \approx {360^o} - \left( {{{90}^o} + {{90}^o} + {{79}^o}26′} \right) \approx {100^o}34’\)

b) Chứng minh tương tự phần a ta có:

\(\widehat {FAB} \approx {79^o}26’\), \(\widehat {EBF} \approx {100^o}34’\)

Do đó, \(\widehat {DAF} = \widehat {DAB} + \widehat {FAB} \approx {158^o}52’\).

Do đó, số đo cung nhỏ DF là: \({158^o}52’\).

Suy ra, số đo cung lớn DF là:

\({360^o} - {158^o}52′ = {201^o}8’\)

Số đo cung CE nhỏ là: \({158^o}52’\).

Độ dài cung lớn DF là:

\({l_{DF}} = \frac{{\pi {{.12.201}^o}8′}}{{{{180}^o}}} = \frac{{3017\pi }}{{225}}\left( {cm} \right)\)

Độ dài cung nhỏ CE là:

\({l_{CE}} = \frac{{\pi .7,{{5.158}^o}52′}}{{180}} = \frac{{2383\pi }}{{360}}\left( {cm} \right)\)

Độ dài dây curoa là:

\({l_{DF}} + {l_{CE}} + CD + EF \approx \frac{{3017\pi }}{{225}} + \frac{{2383\pi }}{{360}} + 2.\frac{{7\sqrt {71} }}{2} \approx 121,9\left( {cm} \right)\)