Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Bài 5.44 trang 129 Toán 9 Cùng khám phá tập 1: Cho...

Bài 5.44 trang 129 Toán 9 Cùng khám phá tập 1: Cho MA và MB là hai tiếp tuyến của đường tròn (O; R) (A...

Chứng minh \(\widehat {AMB} = {60^o}\). + Chứng minh MO là tia phân giác \(\widehat {AMB}\), nên \(\widehat {AMO} = \frac{1}{2}\widehat {AMB}\). Hướng dẫn trả lời bài tập 5.44 trang 129 SGK Toán 9 tập 1 - Cùng khám phá Ôn tập chương 5. Cho MA và MB là hai tiếp tuyến của đường tròn (O; R) (A, B là hai tiếp điểm) sao cho \(\Delta \)MAB là tam giác đều. Khoảng cách OM bằngA. \(\frac{1}{2}R\). B. R. C. 2R. D. \(R\sqrt 2 \)...

Question - Câu hỏi/Đề bài

Cho MA và MB là hai tiếp tuyến của đường tròn (O; R) (A, B là hai tiếp điểm) sao cho \(\Delta \)MAB là tam giác đều. Khoảng cách OM bằng

A. \(\frac{1}{2}R\).

B. R.

C. 2R.

D. \(R\sqrt 2 \).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Chứng minh \(\widehat {AMB} = {60^o}\).

+ Chứng minh MO là tia phân giác \(\widehat {AMB}\), nên \(\widehat {AMO} = \frac{1}{2}\widehat {AMB}\).

+ Chứng minh tam giác AOM vuông tại M nên \(AO = MO.\sin AMO\), từ đó tính được MO.

Answer - Lời giải/Đáp án

Vì tam giác MAB đều nên \(\widehat {AMB} = {60^o}\).

Vì MA và MB là tiếp tuyến của (O) nên MO là tia phân giác \(\widehat {AMB}\), nên \(\widehat {AMO} = \frac{1}{2}\widehat {AMB} = \frac{1}{2}{.60^o} = {30^o}\)

Vì MA là tiếp tuyến của (O) nên \(MA \bot AO\). Do đó, tam giác MAO vuông tại A.

Suy ra, \(AO = MO.\sin AMO\) nên

\(MO = \frac{{AO}}{{\sin AMO}} = \frac{R}{{\sin {{30}^o}}} = 2R\).

Chọn C